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Abstract. Semi-Markov processes are Markovian processes in which the
firing time of transitions is modelled by probabilistic distributions over
positive reals interpreted as the probability of firing a transition at a
certain moment in time.
In this paper we consider the trace-based semantics of semi-Markov pro-
cesses, and investigate the question of how to compare two semi-Markov
processes with respect to their time-dependent behaviour. To this end,
we introduce the relation of being “faster than” between processes and
study its algorithmic complexity. Through a connection to probabilistic
automata we obtain hardness results showing in particular that this re-
lation is undecidable. However, we present an additive approximation al-
gorithm for a time-bounded variant of the faster-than problem over semi-
Markov processes with slow residence-time functions, and a coNP algo-
rithm for the exact faster-than problem over unambiguous semi-Markov
processes.
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real-time systems, semi-Markov processes, probabilistic automata.

1 Introduction

Semi-Markov processes are Markovian stochastic systems that model the firing
time of transitions as probabilistic distribution over positive reals; thus, one
can encode the probability of firing a certain transition within a certain time
interval. For example, continuous-time Markov processes are particular case of
semi-Markov processes where the timing distributions are always exponential.

Semi-Markov processes have been used extensively to model real-time sys-
tems such as power plants [15] and power supply units [16]. For such real-
time systems, non-functional requirements are becoming increasingly important.
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Many of these requirements, such as response time and throughput, depend heav-
ily on the timing behaviour of the system in question. It is therefore natural to
understand and be able to compare the timing behaviour of different systems.

Moller and Tofts [11] proposed the notion of a faster-than relation for systems
with discrete-time in the context of process algebras. Their goal was to be able
to compare processes that are functionally behaviourally equivalent, except that
one process may execute actions faster than the other. This line of study was
continued by Lüttgen and Vogler [10], who moreover considered upper bounds
on time, in order to allow for reasoning about worst-case timing behaviours. For
timed automata, Guha et al. [9] introduced a bisimulation-like faster-than rela-
tion and studied its compositional properties. For continuous-time probabilistic
systems, Baier et al. [3] considered a simulation relation where the timing dis-
tribution on each state is required to stochastically dominate the other. They
introduced both a weak and a strong version of their simulation relation, and
gave a logical characterization of these in terms of the logic CSL.

In the literature, less attention has been drawn to trace-based notions of
faster-than relations although trace equivalence and inclusion are important con-
cepts when considering linear-time properties such as liveness or safety [2]. In
this paper we propose a simple and intuitive notion of trace inclusion for semi-
Markov processes, which we call faster-than relation, that compares the relative
speed of processes with respect to the execution of arbitrary sequences of actions.

Differently from trace inclusion, our relation does not make a step-wise com-
parison of the timing delays for each individual action in a sequence, but over the
overall execution time of the sequence. As an example, consider the semi-Markov
process in Fig. 1. The states s and s′, although performing the same sequences
of actions, are not related by trace inclusion because the first two actions in
any sequence are individually executed at opposite order of speeds (here gov-
erned by exponential-time distributions). Instead, according to our relation, s
is faster-than s′ (but not vice versa) because it executes single-action sequences
at a faster rate than s′, and action sequences of length greater than one at the
same speed — this is due to the fact that the execution time of each action is
governed by random variables that are independent of each other and the sum
of independent random variables is commutative.

Fig. 1. A semi-Markov process where s is faster than s′. The states of the process
are annotated with their timing distributions and each action-labelled transition is
decorated with its probability to be executed.

In this paper we investigate the algorithmic complexity of various problems
regarding the faster-than relation, emphasising their connection with classical al-
gorithmic problems over Rabin’s probabilistic automata. In particular, we prove
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that the faster-than problem over generic semi-Markov processes is undecidable
and that it is Positivity-hard when restricted to processes with only one action
label. The reduction from the Positivity problem is important because it relates
the faster-than problem to the Skolem problem, an important problem in num-
ber theory, whose decidability status has been an open problem for at least 80
years [12, 1].

We show that undecidability for the faster-than problem can not be tackled
even by approximation techniques: via the same connection with probabilistic
automata we are able to prove that the faster-than problem can not be ap-
proximated up to a multiplicative constant. However, as a positive result, we
show that a time-bounded variant of the faster-than problem, which compares
processes up to a given finite time bound, although still undecidable, admits ap-
proximated solutions up to an additive constant over semi-Markov processes with
slow residence-time distributions. These include the important cases of uniform
and exponential distributions.

Finally, we present a coNP algorithm for solving the faster-than problem
exactly over unambiguous semi-Markov processes, where a process is unambigu-
ous if every transition to a next state is unambiguously determined by the label
that it outputs.

A full version of the paper with proofs and additional material can be found
in [14].

2 Semi-Markov Processes and Faster-than Relation

For a finite set S we let D(S) denote the set of subdistributions over S, i.e.
functions δ : S → [0, 1] such that

∑
s∈S δ(s) ≤ 1. The subset of total distri-

butions is D=1(S). We let IN denote the natural numbers and IR≥0 denote the
non-negative real numbers. We equip IR≥0 with the Borel σ-algebra B, so that
(IR≥0,B) is a measurable space. Let D(IR≥0) denote the set of (sub)distributions
over (IR≥0,B), i.e. measures µ : B → [0, 1] such that µ(IR≥0) ≤ 1. Throughout
the paper we will write µ(t) for µ([0, t]). To avoid confusion we will refer to µ in
D(IR≥0) as timing distributions, and to δ in D(S) as distributions.

Definition 1 (Semi-Markov process). A semi-Markov process is a tuple
M = (S, Out, ∆, ρ) where

– S is a (finite) set of states,
– Out is a (finite) set of output labels,
– ∆ : S → D(S × Out) is a transition function,
– ρ : S → D(IR≥0) is a residence-time function.

The operational behaviour of a semi-Markov process can be described as
follows. In a given state s ∈ S, the process fires a transition within time t with
probability ρ(s)(t), leading to the state s′ ∈ S while outputting the label a ∈ Out

with probability ∆(s)(s′, a).
We aim at defining IPM(s, w, t), the probability that from the state s, the

output of the semi-Markov process M within time t starts with the word w. It
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is important to note here that time is accumulated: we sum together the time
spent in all states along the way, and ask that this total time is less than the
specified bound t.

In order to account for the accumulated time in the probability, we need the
notion of convolution. The convolution of two timing distributions µ and ν is
µ ∗ ν defined, for any Borel set E ⊆ IR≥0, as follows

(µ ∗ ν)(E) =

∫ ∞
0

ν(E − x)µ(dx) .

Convolution is both associative and commutative. Let X and Y be two indepen-
dent random variables with timing distributions µ and ν, i.e. IP(X ∈ E) = µ(E)
and IP(Y ∈ E) = ν(E), then IP(X + Y ∈ E) = (µ ∗ ν)(E).

Definition 2 (Probability). Consider a semi-Markov process M. We define
the timing distribution IPM(s, w) inductively on w, as follows, for any word
w ∈ Out∗, label a ∈ Out, and time t ∈ IR≥0

IPM(s, ε)(t) = 1

IPM(s, aw)(t) =
∑
s′∈S

∆(s)(s′, a) · (ρ(s) ∗ IPM(s′, w)) (t) .

We will then write IPM(s, w, t) to mean IPM(s, w)(t).

Timed Comparisons

We introduce the following relation which will be the focus of our paper.

Definition 3 (Faster-than relation). Consider a semi-Markov process M
and two states s and s′. We say that s is faster than s′, denoted s � s′, if for
all words w ∈ Out∗, for all time t ∈ IR≥0,

IPM(s, w, t) ≥ IPM(s′, w, t) .

The algorithmic problem we consider in this paper is the faster-than problem:
given a semi-Markov process and two states s and s′, determine whether s � s′.

Algorithmic Considerations

The definition we use for semi-Markov processes is very general, because we allow
for any residence-time function. The aim of the paper is to give generic algorith-
mic results which apply to effective classes of timing distributions, a notion we
define now. Recall that a residence-time function associates with each state a
timing distribution. We first give some examples of classical timing distributions.

– The prime example is exponential distributions, defined by the timing dis-
tribution µ(t) = 1− e−λt for some parameter λ > 0 usually called the rate.
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– Another interesting example is piecewise polynomial distributions. Consider
finitely many polynomials P1, . . . , Pn and a finite set of pairwise disjoint
intervals I1 ∪ I2 ∪ · · · ∪ In covering [0,∞) such that for every k, Pk is non-
negative over Ik and

∑
k

∫
Ik
Pk = 1. This induces the timing distribution

µ(t) =
∑
k

∫
Ik∩[0,t]

Pk(t) .

– Another important special case of piecewise polynomial distributions are the
uniform distributions with parameters 0 ≤ a < b.

– The simplest example is given by Dirac distributions defined for the param-
eter a by µ(E) = 1 if a is in E, and 0 otherwise.

The following definition captures these examples, and more. For a class C of
timing distributions, we let Convex(C) be the smallest class of timing distribu-
tions containing C and closed under convex combinations, and similarly Conv(C)
adding closure under convolutions.

Lemma 4. Let C be a class of timing distributions. Consider a semi-Markov
processM whose residence-time function uses timing distributions from C. Then,
for any state s ∈M and word w ∈ Out∗, IPM(s, w) ∈ Conv(C).

In the rest of the paper we will consider only distributions that are suitable
for algorithmic manipulation. Clearly, we must be able to give them as input to
a computational device, hence we assume they can be described by finitely many
rational parameters. Moreover, we require that testing inequalities between them
is decidable, since this is essential for determining the faster-than relation. The
next definition formalises this intuition.

Definition 5 (Effective timing distributions). A class C of timing distri-
butions is effective if, for any ε ≥ 0, b ∈ IR≥0 ∪ {∞}, and µ1, µ2 ∈ Conv(C), it
is decidable whether µ1(t) ≥ µ2(t)− ε, for all t ≤ b.

Proposition 6. The following classes of timing distributions are effective: ex-
ponential, piecewise polynomial, uniform, and Dirac distributions.

We do not provide in the conference version a full proof of Proposition 6, as
it is mostly folklore but rather tedious. In particular, for exponential and piece-
wise polynomial distributions one relies on decidability results for the existential
theory of the reals [17], implying that the most demanding operations above can
be performed in polynomial space [4].

Although in this paper we give algorithmic results for generic effective classes
of timing distributions, the semi-Markov processes we will focus on have only
finitely many states, and hence can only use finitely many timing distributions
from the same class. For our decidability results we will therefore focus on finite
classes of timing distributions.

Moreover, in our complexity analyses, we will always assume that the oper-
ations on the timing distributions have a unit cost.
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3 Hardness Results

We start the technical part of this article by presenting a series of hardness
results for semi-Markov processes inherited from Markov processes.

A Markov process is a tuple M = (S, Out, ∆) consisting of a (finite) set of
states S, a (finite) set of labels Out, and a transition function∆ : S → D(S×Out).
For a Markov process M we define the probability IPM(s) on Out∗ inductively,
for a ∈ Out and w ∈ Out∗, as follows

IPM(s, ε) = 1 and IPM(s, aw) =
∑
s′∈S

∆(s)(s′, a) · IPM(s′)(w) .

The faster-than relation � for Markov processes is defined similarly to the case
of semi-Markov processes: s � s′ if, for all words w, IPM(s, w) ≥ IPM(s′, w).

We show that the faster-than problem for Markov processes, and hence also
for semi-Markov processes, is (i) undecidable, (ii) can not be multiplicatively
approximated, and (iii) is Positivity-hard even over the restricted case of Markov
processes with one single output label. These limitations shape and motivate our
positive results, which will be the topic of the remaining sections.

We first explain how hardness results for Markov processes directly imply
hardness results for semi-Markov processes. The following lemma formalises the
two ways semi-Markov processes subsume Markov processes.

Lemma 7. Consider a semi-Markov processM = (S, Out, ∆, ρ) and its induced
Markov process M′ = (S, Out, ∆).

– If ρ is constant, i.e. for all s, s′ we have ρ(s) = ρ(s′), then for all w, for all
t, we have IPM(s, w, t) = IPM′(s, w) · (ρ(s) ∗ · · · ∗ ρ(s)︸ ︷︷ ︸

|w| times

)(t).

– If for all s, ρ(s) is the Dirac distribution for 0, then for all w, for all t, we
have IPM(s, w, t) = IPM′(s, w).

In particular in both cases, the following holds: for s, s′ two states, we have s � s′
in M if, and only if, s � s′ in M′.

The hardness results of this section will be based on a connection to Rabin’s
probabilistic automata. A probabilistic automaton is given by

A = (Q,A, q0, ∆ : Q×A→ D=1(Q), F ) ,

where Q is the set of states, A is the alphabet, q0 is an initial state, ∆ is the
transition function, and F is a set of final or accepting states. Any probabilistic
automatonA induces the probability IPA(w) that a run over w ∈ A∗ is accepting,
i.e. starts in q0 and ends in F .

The key property of probabilistic automata that we will exploit is the unde-
cidability of the universality problem, which was proved in [13], see also [8]. The
universality problem is as follows: given a probabilistic automaton A, determine
whether IPA(w) ≥ 1

2 , for all nonempty words w ∈ A+.
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Given a probabilistic automaton A we define the derived Markov process
M(A) as follows. The set of states of M(A) is Q × {`, r} ∪ {>}, where > is a
new state; the set of output labels is A, and the transition function ∆′ is defined
as follows, for p, q ∈ Q and a ∈ Out:

∆′(p, `)((q, `), a) =
1

2|A|
∆(p, a)(q) ∆′(p, `)(>, a) =

1

2
if p ∈ F

∆′(p, r)((q, r), a) =
1

2|A|
∆(p, a)(q) ∆′(p, r)(>, a) =

1

2
.

Let s = (q0, `) and s′ = (q0, r), where q0 is the initial state of A. Then, for the
Markov process M(A), we can then verify the following equalities:

IPM(A)(s, wa) =
1

(2|A|)|w|
IPA(w) and IPM(A)(s

′, wa) =
1

(2|A|)|w|
1

2
.

Theorem 8. The faster-than problem is undecidable for Markov processes.

We discuss three approaches to recover decidability. A first approach is to look
for structural restrictions on the underlying graph. However, the undecidability
result above for probabilistic automata is quite robust in this respect, as it
already applies when the underlying graph is acyclic, meaning that the only
loops are self-loops. In spite of this, we present in Sect. 5 an algorithm to solve
the faster-than problem for unambiguous semi-Markov processes.

A second approach is to restrict the observations. Interestingly, specialising
the construction above to only one output letter yields a reduction from the Pos-
itivity problem. Formally, the Positivity problem reads: given a linear recurrence
sequence, are all terms of the sequence non-negative? It has been shown that
the universality problem for probabilistic automata with one letter alphabet is
equivalent to the Positivity problem [1]. Thus, using again the derived Markov
process M(A) for a probabilistic automaton A with only one label, we obtain
the following result.

Theorem 9. The faster-than problem is Positivity-hard over Markov processes
with one output label.

A third approach is approximations. However, we can exploit further the con-
nection we made with probabilistic automata, obtaining an impossibility result
for multiplicative approximation. We rely on the following celebrated theorem for
probabilistic automata due to Condon and Lipton [5]. The following formulation
of their theorem is described in detail in [6].

Theorem 10 ([5]). Let 0 < α < β < 1 be two constants. There is no algorithm
which, given a probabilistic automaton A,

– if for all w we have IPA(w) ≥ β, returns YES,
– if there exists w such that IPA(w) ≤ α, returns NO.
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Theorem 11. Let 0 < ε < 1
3 be a constant. There is no algorithm which, given

a Markov process M and two states s, s′,

– if for all w we have IPM(s, w) ≥ IPM(s′, w), returns YES,
– if there exists w such that IPM(s, w) ≤ IPM(s′, w) · (1− ε), returns NO.

From these hardness results for Markov processes together with Lemma 7,
we get the following hardness results for semi-Markov processes.

Corollary 12. The following holds for semi-Markov processes for any class of
timing distributions.

– The faster-than problem is undecidable.
– The faster-than problem with only one output label is Positivity-hard.
– The faster-than problem can not be multiplicatively approximated.

4 Time-Bounded Additive Approximation

Instead of considering multiplicative approximation, we can also consider addi-
tive approximation, meaning that we want to decide whether for all w and t we
have IPM(s, w, t) ≥ IPM(s′, w, t) − ε for some constant ε > 0. In this section,
we present an algorithm to solve the problem of approximating additively the
faster-than relation with two assumptions:

– time-bounded : we only look at the behaviours up to a given bound b in IR≥0,
– slow residence-time functions: each transition takes some time to fire.

As we will show, the combination of these two assumptions imply that the rel-
evant words have bounded length. This is in contrast to the impossibility of
approximating the faster-than relation multiplicatively showed in Sect. 3.

More precisely, we consider the time-bounded variant of the faster-than prob-
lem: given a time bound b ∈ IR≥0, and two states s and s′ in M determine
whether for all t ≤ b and w it holds that IPM(s, w, t) ≥ IPM(s′, w, t).

We first observe that this restriction of the faster-than problem does not
make any of the problems in Sect. 3 easier for semi-Markov processes. Indeed, if
the residence-time functions are all Dirac distributions at 0, then all transitions
are fired instantaneously, and the time-bounded restriction is immaterial. Thus
we focus on distributions that do not fire instantaneously, as made precise by
the following definition.

Definition 13 (Slow distributions). We say that a class C of timing distri-
butions is slow if for all finite subset C0 of C, there exists a computable function
ε : IN× IR≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈ Convex(C0) we have
(µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0.

Given a slow and effective class C of timing distributions, we can do additive
approximation of the time-bounded faster-than problem in the following way.
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We introduce the following notation. Fix a semi-Markov process M. Let
CM = Convex({ρ(s) | s ∈ S}), and n ∈ IN. We define the timing distribution
FM,n by FM,n(t) = 1 if n = 0 and otherwise

FM,n(t) = sup {(µ1 ∗ · · · ∗ µn)(t) | µ1, . . . , µn ∈ CM} .

Lemma 14. For all s and all w, we have IPM(s, w) ≤ FM,|w|.

Theorem 15. For a constant ε > 0, there exists an algorithm which, given a
semi-Markov process M with slow and effective timing distributions, two states
s, s′, and a bound b ∈ IR≥0, determines whether

∀w,∀t ≤ b, IPM(s, w, t) ≥ IPM(s′, w, t)− ε .

Proof. Let CM = Convex({ρ(s) | s ∈ S}), since S is finite there exists a com-
putable function ε : IN× IR≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈ CM
we have (µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0. Given ε > 0, there
exists N such that ε(N, b) < ε. For n ≥ N . By assumption (µ1 ∗ · · · ∗ µn)(b) ≤
ε(n, b) ≤ ε(N, b) < ε for all µ1, . . . , µn ∈ CM. Taking the supremum over
µ1, . . . , µn, we then get FM,n(b) < ε, and by Lemma 14, this means that for all
w of length at least N , we have IPM(s′, w, b) < ε. Hence it holds trivially that
for all t ≤ b and w of length at least N , we have IPM(s, w, t) ≥ IPM(s′, w, t)− ε.

Thus the algorithm checks whether for all words of length less than N , for
all t ≤ b, we have IPM(s, w, t) ≥ IPM(s′, w, t) − ε, which is decidable thanks to
the effectiveness of C. ut

Next we show that there are interesting classes of timing distributions that
are indeed slow. For this we introduce a class of timing distributions that are not
just slow, but furthermore are guaranteed to converge to zero rapidly. We say
that a timing distribution µ is very slow if there exists a computable function

ε : IR≥0 → [0, 1] such that limt→0
ε(t)
t = 0 and for all t, we have µ(t) ≤ ε(t).

Theorem 16. The following classes of timing distributions are slow: very slow,
uniform, and exponential distributions.

The proof of Theorem 16 depends on closed forms for the n-fold convolution
of exponential distributions and uniform distributions, both of which converge
to 0 as n goes to infinity. For exponential distributions, this closed form is the
well-known Gamma distribution.

5 Unambiguous Semi-Markov Processes

In order to regain decidability of the faster-than relation, we can look at struc-
turally simpler special cases of semi-Markov processes. Here we will focus on
semi-Markov processes such that each output word induces at most one trace of
states. More precisely, we will say that a semi-Markov process is unambiguous if
for every state s and output label a ∈ Out, there exists at most one state s′ such
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Fig. 2. An example of an unambiguous semi-Markov process.

that ∆(s)(s′, a) 6= 0. A related notion of bounded ambiguity has been utilised to
obtain decidability results in the context of probabilistic automata [7]. We in-
troduce the following notation for unambiguous semi-Markov processes: T (s, w)
is the state reached after emitting w from s.

Example 17. Figure 2 gives an example of an unambiguous semi-Markov process.
For each of the three states, there is at most one state that can be reached by
a given output label. However, there need not be a transition for each output
label from every state. In this example, the state s2 has no b-transition, so for
instance T (s1, ab) = s2, but T (s1, abb) is undefined.

Theorem 18. The faster-than problem is decidable in coNP over unambiguous
semi-Markov processes for all effective classes of timing distributions.

Theorem 18 follows from the next proposition.

Proposition 19. Consider an unambiguous semi-Markov process M and two
states s, s′. Let L(s, s′) be the set of loops reachable from (s, s′):{

(p, p′, v) ∈ S2 × Out≤S
2

∣∣∣∣ ∃w ∈ Out≤S
2

,
T (s, w) = p, T (s′, w) = p′,
T (p, v) = p, T (p′, v) = p′

}
.

We have s � s′ if, and only if

– for all w ∈ Out≤S
2

, we have IPM(s, w) ≥ IPM(s′, w), and
– for all (p, p′, v) ∈ L(s, s′), we have IPM(p, v) ≥ IPM(p′, v).

Before going into the proof, we explain how to use Proposition 19 to construct
an algorithm solving the faster-than problem over unambiguous semi-Markov
processes.

1. The first step is to compute L(s, s′), which can be done in polynomial time
using a simple graph analysis,

2. The second step is to check the two properties, which both can be reduced
to exponentially many queries of the form: µ1 ≥ µ2 for µ1, µ2 in Conv(C).

To obtain a coNP algorithm, in the second step we guess which of the two
properties is not satisfied and a witness of polynomial length, which is either
a word of quadratic length for the first property, or two states and a word of
quadratic length for the second property.
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Proof (of Proposition 19). ( =⇒ ) Assume that s is faster than s′ and let (p, p′)
be in L(s, s′). There exist w, v ∈ Out∗ such that T (s, w) = p, T (s′, w) =
p′, T (p, v) = p, T (p′, v) = p′. Let n ∈ IN. Since s is faster than s′, we have
IPM(s, wvn) ≥ IPM(s′, wvn). We have

IPM(s, wvn) = IPM(s, w) ∗ IPM(p, v) ∗ · · · ∗ IPM(p, v)︸ ︷︷ ︸
n times

IPM(s′, wvn) = IPM(s′, w) ∗ IPM(p′, v) ∗ · · · ∗ IPM(p′, v)︸ ︷︷ ︸
n times

.

Let Xs,w be the random variable measuring the time elapsed from s emitting w.
Similarly, we define Xp,v, Ys′,w and Yp′,v. We have: for all n ∈ IN, for all t,

IPM(Xs,w + nXp,v ≤ t) ≥ IPM(Ys′,w + nYp′,v ≤ t) ,

Dividing both sides by n yields

IPM

(
Xs,w

n
+Xp,v ≤

t

n

)
≥ IPM

(
Ys′,w
n

+ Yp′,v ≤
t

n

)
.

We make the change of variables x = t
n : for all n ∈ IN, for all x we have

IPM

(
Xs,w

n
+Xp,v ≤ x

)
≥ IPM

(
Ys′,w
n

+ Yp′,v ≤ x
)

.

Letting n → ∞, we then obtain, for all x IPM(Xp,v ≤ x) ≥ IPM(Yp′,v ≤ x),
which is equivalent to IPM(p, v) ≥ IPM(p′, v).

(⇐= ) We prove that for all w, we have IPM(s, w) ≥ IPM(s′, w) by induction
on the length of w. For w of length at most S2, this is ensured by the first
assumption. Let w be a word longer than S2. There exist two states p, p′ such
that p is reached by s and p′ by s′ after emitting i letters of w and again after
emitting j letters of w, with j at most S2. Let w = w1 v w2 where v starts at
position i and ends at position j. By construction (p, p′, v) is in L(s, s′). We have

IPM(s, w) = IPM(s, w1) ∗ IPM(p, v) ∗ IPM(p, w2)

= IPM(s, w1w2) ∗ IPM(p, v)

≥ IPM(s′, w1w2) ∗ IPM(p′, v) (inductive hypothesis)

= IPM(s′, w) .

ut

6 Conclusion and Open Problems

We have introduced a trace-based relation on semi-Markov processes called the
faster-than relation which asks that for any time bound, the probability of out-
putting any word within the time bound is higher in the faster process than in the
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slower process. We have shown through a connection to probabilistic automata
that the faster-than relation is highly undecidable. It is undecidable in general,
and remains Positivity-hard even restricting to processes with one output la-
bel. Furthermore, approximating the faster-than relation up to a multiplicative
constant is shown to be impossible.

However, we constructed algorithms for special cases of the faster-than prob-
lem. We have shown that if one considers approximating up to an additive con-
stant rather than a multiplicative constant, and if one gives a bound on the time
up to which one is interested in comparing the two processes, then approximation
can be done for timing distributions in which we are sure to spend some amount
of time to take a transition. In addition, we have shown that the faster-than
relation over unambiguous processes is decidable and in coNP.

In this paper, we have focused on the generative model, where the labels
are treated as outputs. An alternative viewpoint would be to consider reactive
models, where the labels are instead treated as inputs [18]. While all the unde-
cidability and hardness results we have shown can also easily be shown to hold
for reactive Markov processes, the same is not true for the algorithms we have
constructed. It is non-trivial to extend these algorithms for the case of reactive
semi-Markov processes: the main obstacle is that for reactive systems, one has
to also handle schedulers, often uncountably many. It is therefore still an open
question whether our decidability results carry over to reactive models.
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