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3Introduction
Time is important

I Airbag must deploy within a
precise time window.

I Light must not be red for more
than a minute.

I A pacemaker must take over
quickly and produce a
precisely timed pattern.
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4Introduction
Time is important

We want to be able to analyse timing aspects of
systems.
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"Must complete within two minutes."

Modelling/formalising

Translating to formal
specification language
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6Introduction
Model checking

M |= ϕ

The model M satisfies the requirements given by ϕ.
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8Models
Weighted transition systems

Robot vacuum cleaner
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Weighted transition systems

Definition 2.6.1
A weighted transition system (WTS) is a tupleM = (S,→, `), where
I S is a set of states,
I → ⊆ S × R≥0 × S is the transition relation, and
I ` : S → 2AP is the labelling function.
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10Models
Semi-Markov processes

Intelligent traffic light
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11Models
Semi-Markov processes

Definition 2.6.4
A semi-Markov process (SMP) is a tupleM = (S, τ, ρ, `), where
I S is a countable set of states,
I τ : S × In→ D(S × Out) is the transition function,
I ρ : S → D(R≥0) is the time-residence function, and
I ` : S → 2AP is the labelling function.
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Semi-Markov processes

Reactive semi-Markov processes:

τ : S × In→ D(S) input

Generative semi-Markov processes:

τ : S → D(S × Out) output
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13Contributions
Papers

I Paper A: Reasoning About Bounds in Weighted Transition
Systems, published in LMCS.
Co-authors: Mikkel Hansen, Kim Guldstrand Larsen, and Radu Mardare.

I Paper B: Timed Comparisons of Semi-Markov Processes,
published in LATA ’18.
Co-authors: Nathanaël Fijalkow, Giorgio Bacci, Kim Guldstrand Larsen,
and Radu Mardare.

I Paper C: A Faster-Than Relation for Semi-Markov Decision
Processes, unpublished.
Co-authors: Giorgio Bacci and Kim Guldstrand Larsen.

I Paper D: A Hemimetric Extension of Simulation for Semi-Markov
Decision Processes, published in QEST ’18.
Co-authors: Giorgio Bacci, Kim Guldstrand Larsen, and Radu Mardare.
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Paper A

Contribution 1
We present a language for reasoning
about lower and upper bounds in
weighted transition systems and we show
that this language characterises exactly
those systems that have the same kind of
behaviour.
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Weighted logic with bounds (WLWB):

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lrϕ | Mrϕ

Lrϕ: a transition with at least weight r can be taken to where ϕ holds.

Mrϕ: a transition with at most weight r can be taken to where ϕ holds.
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Paper A

Theorem A.2.5
For image-finite WTSs, we have

s ∼ t if and only if for all ϕ, s |= ϕ if and only if t |= ϕ.
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18Contributions
Paper A

Contribution 2
We provide a complete axiomatisation of
the logical specification language, and
give an algorithm for deciding the model
checking problem and an algorithm for
deciding satisfiability of a formula.
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Paper A

(A1): ` ¬L0⊥
(A2): ` Lr+qϕ→ Lrϕ if q > 0
(A2′): ` Mrϕ→ Mr+qϕ if q > 0
(A3): ` Lrϕ ∧ Lqψ → Lmin{r ,q}(ϕ ∨ ψ)
(A3′): ` Mrϕ ∧Mqψ → Mmax{r ,q}(ϕ ∨ ψ)
(A4): ` Lr (ϕ ∨ ψ)→ Lrϕ ∨ Lrψ
(A5): ` ¬L0ψ → (Lrϕ→ Lr (ϕ ∨ ψ))
(A5′): ` ¬L0ψ → (Mrϕ→ Mr (ϕ ∨ ψ))
(A6): ` Lr+qϕ→ ¬Mrϕ if q > 0
(A7): ` Mrϕ→ L0ϕ
(R1): ` ϕ→ ψ =⇒ ` (Lrψ ∧ L0ϕ)→ Lrϕ
(R1′): ` ϕ→ ψ =⇒ ` (Mrψ ∧ L0ϕ)→ Mrϕ
(R2): ` ϕ→ ψ =⇒ ` L0ϕ→ L0ψ

+ axioms for propositional logic.



M. R. Pedersen | Behavioural Preorders on Stochastic Systems

20Contributions
Paper A

Soundness and completeness
Theorem A.4.2 and A.4.10

` ϕ if and only if |= ϕ
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21Contributions
Paper A

Model checking: Does a given model M satisfy a given
formula ϕ?
Theorem A.5.4
The model checking problem for WLWB is decidable.

Satisfiability: Does there exist a model which satisfies a
given formula ϕ?
Theorem A.5.11
The satisfiability problem for WLWB is decidable.
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Paper B and Paper C

Generative:
Definition B.2.3
s1 is faster than s2 (s1 � s2) if for all a1 . . . an and t we have

P(s1)(a1 . . . an, t) ≥ P(s2)(a1 . . . an, t).

Reactive:
Definition C.4.3
s1 is faster than s2 (s1 � s2) if for all schedulers σ, a1 . . . an, and t
there exists a scheduler σ′ such that

Pσ
′
(s1)(a1 . . . an, t) ≥ Pσ(s2)(a1 . . . an, t).
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Paper B and Paper C

Contribution 3
We show that deciding the faster-than
relation is a difficult problem. In particular,
the relation is undecidable and
approximating it up to a multiplicative
constant is impossible.
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Contribution 4
We give an algorithm for approximating a
time-bounded version of the faster-than
relation up to an additive constant for
slow processes.
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Paper B and Paper C

Assumptions:
I Time-bounded: We only look at behaviours up to a given time

bound.
I Slow residence-time functions: all transitions take some time to

fire.

Theorem B.4.3 and C.5.6
The time-bounded approximation problem is decidable.
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Contribution 5
We give an algorithm for unambiguous
processes which can decide whether one
process is faster than another.
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Paper B and Paper C

A SMP is unambiguous if every output label leads to a unique
successor state.

s1

s2s3

a : 1
2

a : 1
2

a : 1

a : 1
3 b : 2

3

Figure 1: Ambiguous

s1

s2s3

a : 1
2

b : 1
2

a : 1

a : 1
3 b : 2

3

Figure 2: Unambiguous

Theorem B.5.2
For unambiguous SMPs, the faster-than problem is decidable.
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Contribution 6
We introduce a logical language which
characterises the faster-than relation and
we show that both the satisfiability
problem and the model checking problem
for this language are decidable.
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Contribution 7
We give examples of parallel timing
anomalies occuring for the faster-than
relation. However, we also describe some
conditions under which parallel timing
anomalies can not occur, and we develop
an algorithm for checking whether these
conditions are met.
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Paper B and Paper C

Theorem C.6.15
There exist decidable conditions that guarantee the absence of timing
anomalies.
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Reactive processes
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Definition D.2.2
s2 simulates s1, written s1 - s2, if

...

I Fs1 (t) ≤ Fs2 (t) for all t ∈ R≥0

...
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s2 simulates s1, written s1 - s2, if
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Definition D.4.5

d(s1, s2) = inf{ε ≥ 1 | s1 -ε s2}
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Definition D.2.2
s2 ε-simulates s1, written s1 -ε s2, if

...

I Fs1 (t) ≤ Fs2 (ε · t) for all t ∈ R≥0

...

Definition D.4.5

d(s1, s2) = inf{ε ≥ 1 | s1 -ε s2}
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Contribution 8
We describe an algorithm for computing
the distance from one process to another.
This algorithm runs in polynomial time
using known techniques, making it
relevant for use and implementation in
practice.
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Contribution 9
We show that, under mild assumptions,
composition is non-expansive with
respect to the distance between
semi-Markov processes.
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Contribution 10
We introduce a logical specification
language called timed Markovian logic
and show that this language
characterises both the ε-simulation
relation and the distance between
semi-Markov processes.
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Timed Markovian logic
TML : ϕ,ϕ′ ::= α | ¬α | `pt | mpt | La

pϕ | Ma
pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

La
pϕ: probability of going with an a to where ϕ holds is at least p.

Ma
pϕ: probability of going with an a to where ϕ holds is at most p.

`pt : probability of leaving state before time t is at least p.
mpt : probability of leaving state before time t is at most p.

TML
≥ : ϕ ::= α | ¬α | `pt | La

pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

TML
≤ : ϕ ::= α | ¬α | mpt | Ma

pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′
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Perturbation (ϕ)ε:
I (`pt)ε = `pε · t
I (mpt)ε = mpε · t

Theorem D.7.2
For finite SMPs we have
I d(s1, s2) ≤ ε if and only if

for all ϕ ∈ TML≥, s1 |= ϕ implies s2 |= (ϕ)ε

I d(s2, s1) ≤ ε if and only if

for all ϕ ∈ TML≤, s2 |= (ϕ)ε implies s1 |= ϕ
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Summary

I Formalisms for specifying, comparing, and reasoning about
properties involving time.

I Algorithms enabling use of these formalisms in practice.

I Weighted logic with bounds allows reasoning about upper and
lower bounds on time.

I Faster-than relation allows qualitative comparison of time
behaviour of different systems.

I ε-simulation allows quantitative comparison of time behaviour of
different systems.
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Strong completeness

Weak completeness

|= ϕ implies ` ϕ
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Strong completeness

Φ |= ϕ implies Φ ` ϕ
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Exp[2]
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Thank you!



Exp[3]

s1

Exp[θ]

s2

a : 1

a : 1

Exp[4]

t1

Exp[5]

t2

Exp[9]

t3

a : 0.1

a : 1

a : 0.9

a : 1

Figure 3: A semi-Markov process where s1 - t1 if θ ≤ 5 and s1 6- t1 if θ > 5.



Time-bounded approximation
0 b

m m m m m

n times

I P(s,an,b)→ 0 as n→∞.
I Hence we can find N such that P(s,an,b) ≤ ε for all n ≥ N.
I We only need to consider words of length ≤ N.



Tableau

〈{¬(¬(L2p1 ∧M5L1p1) ∧M2p2)}, [0,0], [0,0]〉
(¬∧)

〈{¬¬(L2p1 ∧M5L1p1)}, [0,0], [0,0]〉
(¬¬)

〈{L2p1 ∧M5L1p1}, [0,0], [0,0]〉
(∧)

〈{L2p1,M5L1p1}, [0,0], [0,0]〉
(mod)

〈{p1,L1p1}, [2,∞), [5,∞)〉
(mod)

〈{p1}, [1,∞), [0,∞)〉

〈{¬¬M2p2}, [0,0], [0,0]〉
(¬¬)

〈{M2p2}, [0,0], [0,0]〉
(mod)

〈{p2}, [0,∞), [0,2]〉

sT

{}

s1

{p1}

s2

{p1}

5

2

1

1



Image-finite counterexample

ω

...

n

...

2

1

s t

... ...

0

0

0

0

0

2

1
4

1

4

1
4

3

1
4

1

4

1
4

Figure 4: s and t satisfy the same logical formulas, but s 6∼ t .



Kantorovich counterexample

ui

vi

εi

1− εi

u

v

1

0

Figure 5: A Markov process with states ui and vi for each i ∈ N.



New axioms

{Lqϕ | q < r} ` Lrϕ and {Mqϕ | q < r} ` Mrϕ



Generative composition – synchronous

s1

s2 s3

t1

t2 t3

a : 1
2 b : 1

2 a : 1
3 c : 2

3

s1 ‖ t1s2 ‖ t2

s3 ‖ t2 s2 ‖ t3

s3 ‖ t3
aa : 1

6

ba : 1
6 ac : 1

3

bc : 1
3

Example from Ana Sokolova and Erik P. de Vink, Probabilistic
Automata: System Types, Parallel Composition and Comparison, in
Validation of Stochastic Systems - A Guide to Current Research,
Lecture Notes in Computer Science volume 2925, pp. 1–43, 2004
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