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Finite automata to weighted automata

a,?2 a1 a4
b,1 a3
M - start —
b,2

bbaa — (1 x2x3x4)+(1x2x1x3)
abba+— (2 x 1 x 2 x 3)
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Weighted automata

Finite automata to weighted automata
Semirings
Biichi-Elgot-Trakhtenbrot theorem

Semirings

Weights are taken from a semiring.

A semiring is a tuple (X, +, X, 0,1) such that

@ (X,+,0) is a commutative monoid,
e (X, x,1) is a monoid,
@ X distributes over 4+, and

@ 0 is absorbing for x.
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Semirings

Weights are taken from a semiring.

A semiring is a tuple (X, +, X, 0,1) such that

(X,+,0) is a commutative monoid,
(X, x,1) is a monoid,

°
@ X distributes over 4+, and
°

0 is absorbing for x.

Examples:
o (Z,+,x,0,1)
o (NU{—o0}, max,+, —00,0)
o (RU {400}, min,+,+00,0)
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Weighted automata
Finite automata to weighted automata

Elgot-Trakhtenbrot theorem

Buchi-Elgot-Trakhtenbrot theorem

Theorem (Biichi, Elgot, Trakhtenbrot)

MSO and (non-weighted) automata are expressively equivalent.
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Weighted MSO and FO

=T |Py(x) [ x<y|xeX]|g]| (MSO)
P1 A2 | Vxp | VX

Vi=r|e?WV;: V¥, (step-wMSO)

Su=0|][[V]|p?d1: Py | (core-wMSO)
1+ P2 [ 3, P x®
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Weighted MSO and FO

=T Pa(x) [ xJy|xeX]|p| (FO)
P12 | Vx| FXp

Vi=r|e?V;: ¥, (step-wFO)
Su=0|][[V]p?d1: Dy | (core-wFO)

G+ P2 [ D0, 0| x®
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Weighted monadic second-order logic

Weighted MSO and FO

Semantics of weighted MSO

Example

Weighted MSO and weighted automata

Semantics of weighted MSO

MSO: For a word w and a valuation o

w,o =T

w,o = Pa(x) iff
w,o =Ex<y iff
w,o =xe X iff

w,o = g iff
w,o = p1 A iff
w,o = Vx.p iff

w,o = VYX.p iff

always,
w(o(x)) = a,
o(x) < a(y),
o(x) € o(X),
w,o = p,

w,o = @1 and w, o = @2,
w,olx — il Eeforallie{l,... |w|}
w,o[X— Il Epforall | C{1,... |w|}
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Semantics of weighted MSO

step-wMSO: We define a function [-] that assigns a weight to each
pair of word and valuation

[7) (w,0) =1

. o) — Vi) (w,0) if w,o = ¢
[o? W1 : Vo] (w,0) [W2] (w, o) otherwise
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Weighted MSO and FO

Semantics of weighted MSO

Example

Weighted MSO and weighted automata

Weighted monadic second-order logic

Semantics of weighted MSO

core-wMSO: We define a function [-] that assigns a multiset of
sequences of weights to each pair of word and valuation

[0] (w,0) =0
| ~J[®1](w,0)ifw,o =
[p?®1: @] (w,0) = {[[¢2]] (w, o) otherwise

[[LV] (w,0) ={nr...nwl where r; = [V] (w,o[x — i])
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Weighted MSO and weighted automata

Weighted monadic second-order logic

Semantics of weighted MSO

core-wMSO: We define a function [-] that assigns a multiset of
sequences of weights to each pair of word and valuation

[0] (w,0) =0
_ ~J[®1](w,0)ifw,o =
o7 @12 @ (w,0) = {[[CDQ]] (w, o) otherwise
[[LV] (w,0) ={nr...nwl where r; = [V] (w,o[x — i])
[®1 + 2] (w, )= [®1] (w,0) & [®2] (w, 0)
[C0)(w.o)= [ [®](w.olx = i])

1<i<|w]

[Cx¢l(w.o)= [ [®](w,olX = 1)

IC{L, ]}
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Weighted monadic second-order logic

Example

Count the maximum number of consecutive a's.
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa
(NU {—o0}, max, +, —00,0)
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa
(NU {—o0}, max, +, —00,0)

[®] (w,0)
= [¢] (w,ox = 1]) 0 [¢] (w, olx - 2])
W [@'] (w, olx = 3]) & [@'] (w, olx — 4])
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Semantics hted MSO

Example

Weighted MSO and weighted automata

Weighted monadic second-order logic

Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))
V=p?1:0 ¢'=][V &=3" 0" w=abaa
(NU {—o0}, max, +, —00,0)
[®] (w,0)
={Vl(w,olx = Ly = 1)) [V] (w,0[x = 1,y > 2])

[V] (w,o[x+— 1,y — 3]) [V] (w,o[x — 1,y — 4])[}
W [[GD']] (w,o[x — 2]) ¥ [[dJ’]] (w,o[x —3]) W [[CD']] (w, o[x — 4])
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

V=p?1:0 ¢'=][V &=3" 0" w=abaa
(NU {—o0}, max, +, —00,0)
[®] (w,0)
= {|1000}}
) [[CD']] (w,o[x = 2]) ¥ [[CD/]] (w,o[x = 3]) W [[CD']] (w,o[x — 4])
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

V=p?1:0 ¢'=][V &=3" 0" w=abaa
(NU {—o0}, max, +, —00,0)
[®] (w,0)
= {|1000}
) [[Cb/ﬂ (w,o[x —2]) ¥ [[CD/]] (w,o[x = 3]) W [[CD']] (w,o[x — 4])
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa
(NU {—o0}, max, +, —00,0)

[®] (w, o)
= {|1000}} & {/0000}
W 9] (w, olx = 3]) & [@'] (w, olx — 4])
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))

_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa
(NU {—o0}, max, +, —00,0)

[®] (w,0)
= {/1000]} w {|0000[} W {|0011[}
W [[CD’]] (w,olx — 4])
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Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))
_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa

(NU {—o0}, max, +, —00,0)

[®] (w,0)
— {/1000]} W {|0000[} & {|0011[} W {000L]}

Antonis Achilleos and Mathias R. Pedersen Axiomatising wMSO on Finite Words 7/16



Weighted MSO

Semantics o

Example

Weighted MSO and weighted automata

Weighted monadic second-order logic

Example

Count the maximum number of consecutive a's.
p=x<yAVz.((x <zAz<y)— Psy(2))
_ . r_ _ _
V=¢p71:0 ' =[[ WV &=3 & w=abaa

(NU {—o0}, max, +, —00,0)

[®] (w,0)
= {|1000[} w {/0000[} w {|0011[} W {|0001}
= max{1,0,2,1} =2
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Weighted MSO and weighted automata

Theorem (Droste and Gastin, TCS 2007)

Weighted MSO and and weighted automata are expressively
equivalent.
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Weighted monadic second-order logic

Weighted MSO and weighted automata

Theorem (Droste and Gastin, TCS 2007)

Weighted MSO and and weighted automata are expressively
equivalent.

Theorem (Droste and Gastin, MFCS 2019)

Weighted FO and aperiodic polynomially ambiguous weighted
automata are expressively equivalent.
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Axiomatisation

Theorem (Gheerbrant and ten Cate, LMCS 2012)

MSO on finite words has a complete axiomatisation.
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Axiomatisation step-wMSO
core-wMSO

step-wMSO

(S1): Ttn=n ifrn=n

(S2): TF Wy~ W, implies TU{p} F Wy~ W, Ve MSO

(S3): THEV=p?V:V

(S) Fk—w?\lll:wgzgo?\llg:wl

(S5): THE?2V; VU Wy ifr-pe T
ifTU{p} Wy~ W

(S6): and TU{—p}F V¥, =V,

thenTH?7W; WU = W

Table: Axioms for step-wMSO.
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Axiomatisation step-wMSO
core-wMSO

step-wMSO

Theorem (Completeness)

I'E Wy = W, if and only if [W1] (w, o) = [V2] (w, o) for all (w, o)
such that (w,o0) ET.

Antonis Achilleos and Mathias R. Pedersen Axiomatising wMSO on Finite Words 10/16



MSO
Axiomatisation step-wMSO
core-wMSO

step-wMSO

Theorem (Completeness)

I'E Wy = W, if and only if [W1] (w, o) = [V2] (w, o) for all (w, o)
such that (w,o0) ET.

Note: We may use any kind of Boolean logic to condition on. The
above result holds for any such logic which has a complete
axiomatisation.
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MSO
Axiomatisation step-wMSO
core-wMSO

core-wMSO

Cl): TFro+0~o
(C2): THIL V1=, V2 ifr-w, ~ W,
Mo 7@ : O+ 2 79 : &) ~

P1 A2 7P+ Py

(1 A =2 701 4 @)

(701 A o2 70 + P 1 D] + B3))
(CA): ThEY xe?P1 :Pomp?d  d1:) &y if X & var(p)
(C5): TH® =y impliesT >, P1~> 4P

Table: Axioms for core-wMSO.

(C3):
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Axiomatisation

core-wMSO

Neither core-wFO nor core-wMSO has a complete, recursive
axiomatisation.
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Model checking

Classically: Given M and ¢, do we have M = ¢?
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Model checking

Classically: Given M and ¢, do we have M = ¢?

Weighted: Given (w,c), ®, and r, do we have [®] (w,0) = r?
step-wMSQO: Decidable using model checking of MSO (or FO),
which is PSPACE-complete

core-wMSQO: Decidable, complexity unclear
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Satisfiability

Clasically: Given ¢, does there exist M such that M |= ¢?
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Model checking
Satisfiability
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Satisfiability

Clasically: Given ¢, does there exist M such that M |= ¢?
Weighted 1: Given (w, o) and ®, does there exist r such that

[®] (w,0) =r?
Since [-] is a total function, this is trivial
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Satisfiability

Clasically: Given ¢, does there exist M such that M |= ¢?

Weighted 1: Given (w, o) and ®, does there exist r such that
[®] (w,0) =r?
Since [-] is a total function, this is trivial

Weighted 2: Given ® and r, does there exist (w, o) such that
[®] (w,0) =r?

step-wMSO: Decidable using satisfiability of MSO (or FO), which
has non-elementary complexity

core-wMSQO: ??? Conjecture: Decidable
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Satisfiability

Weighted 3: Given ®; and ®,, does there exist (w, o) such that
[®1] (w,0) = [®2] (w, 0)?

step-wMSQO: Decidable using satisfiability

core-wMSQO: 7?7 Conjecture: Undecidable, even for FO
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Validity

Classically: Given ¢, do we have M |= ¢ for all M?
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Validity

Classically: Given ¢, do we have M |= ¢ for all M?

Weighted 1: Given ®, does there exist r such that [®] (w,0) =r
for all (w,0)?

step-wMSQO: Decidable using validity of MSO (or FO), which has
non-elementary complexity

core-wMSO: Does not make sense (except 0)
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Validity

Classically: Given ¢, do we have M |= ¢ for all M?

Weighted 1: Given ®, does there exist r such that [®] (w,0) =r
for all (w,0)?

step-wMSQO: Decidable using validity of MSO (or FO), which has
non-elementary complexity

core-wMSO: Does not make sense (except 0)

Weighted 2: Given ®; and ®,, do we have

[®1] (w, o) = [®2] (w, o) for all (w,0)?

step-wMSQO: Decidable using validity

core-wMSQO: 7?7 Conjecture: Undecidable, even for FO
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Conclusion

Summary

@ We have given a complete axiomatisation of the step layer of
weighted MSO.

@ We are currently working on the problem of giving a complete
axiomatisation for the core layer of weighted MSO. Our
current conjecture is that no such axiomatisation exists.

@ We have investigated decision problems for weighted MSO
that extend classical decision problems for logics such as
model checking, satisfiability, and validity.

@ For these decision problems, we have decidability results for
the step layer, but the core layer is still unclear.
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Conclusion

Open problems

@ Complete axiomatisation of core-wMSQO?

@ If no such axiomatisation exists, can we get one for fragments
of core-wMSO or core-wFO?

@ Establish tight lower and upper bounds on complexity for the
decision problems.
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