
A Hemimetric Extension of Simulation for
Semi-Markov Decision Processes ?

Mathias R. Pedersen1, Giorgio Bacci1, Kim G. Larsen1, and Radu Mardare1

Department of Computer Science, Aalborg University, Denmark

Abstract. Semi-Markov decision processes (SMDPs) are continuous-
time Markov decision processes where the residence-time on states is
governed by generic distributions on the positive real line.
In this paper we consider the problem of comparing two SMDPs with
respect to their time-dependent behaviour. We propose a hemimetric be-
tween processes, which we call simulation distance, measuring the least
acceleration factor by which a process needs to speed up its actions in
order to behave at least as fast as another process. We show that this
distance can be computed in time O(n2(f(l) + k) + mn7), where n is
the number of states, m the number of actions, k the number of atomic
propositions, and f(l) the complexity of comparing the residence-time
between states. The theoretical relevance and applicability of this dis-
tance is further argued by showing that (i) it is suitable for compositional
reasoning with respect to CSP-like parallel composition and (ii) has a
logical characterisation in terms of a simple Markovian logic.

1 Introduction

Semi-Markov decision processes (SMDPs) are Markovian stochastic decision pro-
cesses modelling the firing time of transitions via real-valued random variables
describing the residence-time on states. Semi-Markov decision processes pro-
vide a more permissive model than continuous-time Markov decision processes,
since they allow as residence-time distributions any generic distribution on the
positive real line, rather than only exponential ones. The generality offered by
SMDPs has been found useful in modelling several real-case scenarios. Successful
examples include power plants [19] and power supply units [20], to name a few.

When considering such real-time stochastic processes, non-functional require-
ments are important, particularly requirements like response time and through-
put, which depend on the timing behaviour of the process. We therefore wish to
understand and be able to compare the timing behaviour of different processes.

To cope with the need for comparing the timing behaviour of different sys-
tems, in this paper we propose and study a quantitative extension of the simula-
tion relation by Baier et al. [2], called ε-simulation, which puts the focus on the
timing aspect of processes. The intuition is that a process s2 ε-simulates another

? The final authenticated version is available online at https://doi.org/10.1007/978-3-
319-99154-2 21

process s1 if after accelerating the actions of s2 by a factor ε > 0 it reacts to the
inputs from the external environment as s1 with at least the same speed.

This type of quantitative reasoning is not new in the literature, and it dates
back to the seminal work of Jou and Smolka [14, 9], who proposed the concept
of probabilistic ε-bisimulation. This line of work has lead to much work on prob-
abilistic bisimulation distances [5, 7, 8]. While our work is conceptually similar
to the bisimulation distances, it is technically very different. This is because
bisimulation distances are constructed from a coalgebraic view as fixed points of
operators. However, for the kind of timed systems that we are investigating, the
coalgebraic perspective is much less understood. Moreover, since our distance
generalises a preorder relation and not a congruence as the other distances do,
it is not symmetric, which brings in new technical challenges

Following the work of Jou and Smolka, our notion of ε-simulation naturally
induces a distance between processes: For any pair of states s1 and s2, we define
their simulation distance as the least acceleration factor needed by s2 to speed
up its actions in order to behave at least as fast as s1. This definition does not
provide a distance in the usual sense, but rather a multiplicative hemimetric,
i.e. an asymmetric notion of distance satisfying a multiplicative version of the
triangle inequality. Such a notion is not new, as it is extensively applied in the
context of differential privacy to measure information leakage of systems (see
e.g. [1, 4]).

The theoretical relevance and applicability of the simulation distance is ar-
gued by means of the following results, which are the main technical contribu-
tions of the paper:

1. We provide an algorithm for computing the simulation distance between ar-
bitrary states of an SMDP running in time O(n2(f(l) + k) +mn7), where n
is the number of states, m the number of actions, k the number of atomic
propositions, and f(l) the complexity of comparing the residence time dis-
tributions on states.

2. We show that under some mild conditions on how residence-time distribu-
tions are combined in the parallel composition of two states, CSP-like parallel
composition of SMDPs is non-expansive with respect to our hemimetric. This
shows that the simulation distance is suitable for compositional reasoning.

3. We provide a logical characterisation of the distance in terms of a simple
Markovian logic, stating that the distance from s1 to s2 is less than or equal
to ε if and only if s2 satisfies the ε-perturbation of any logical property that s1
satisfies. Moreover, we prove that ε-simulation preserves the ε-perturbation
of time-bounded reachability properties.

Notation and Preliminaries. Let IN denote the natural numbers, Q≥0 the
non-negative rational numbers, IR≥0 the non-negative real numbers, and IR>0

the strictly positive ones. Given a set X, we will denote by D(X) the set of all
probability measures on X. If µ ∈ D(IR≥0), then the cumulative distribution
function (CDF) will be denoted by Fµ and is given by Fµ(t) = µ([0, t]). For
x ∈ IR≥0, we will write δx for the Dirac measure at x, which is defined by

δx(E) = 1 if x ∈ E and δx(E) = 0 otherwise. For any θ ∈ IR>0, we will write
Exp[θ] for the CDF of an exponential distribution with rate θ, and for a, b ∈ IR≥0
such that a < b, we will write Unif [a, b] for the CDF of a uniform distribution.

We will use the convention that ∞ + x = ∞ for x ∈ IR≥0 and ∞ · y = ∞
for y ∈ IR>0. A function d : X × X → IR≥0 ∪ {∞} is called a hemimetric if it
satisfies d(x, x) = 0 and the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). It is
called a pseudometric if it is also symmetric, i.e. d(x, y) = d(y, x), and it is called
a metric if it is symmetric and furthermore d(x, y) = 0 if and only if x = y.

2 Semi-Markov Decision Processes

In this section, we introduce semi-Markov decision processes, which are continu-
ous-time reactive probabilistic systems. A semi-Markov decision process has res-
idence time on states governed by generic distributions on the positive real line
and reacts to inputs from an external environment by making a probabilistic
transition to a next state.

Hereafter, we consider a non-empty finite set of input actions A, and a non-
empty, finite set of atomic propositions AP .

Definition 1. A semi-Markov decision process (SMDP) is given by a tuple
M = (S, τ, ρ, L) where

– S is a non-empty, countable set of states,
– τ : S ×A→ D(S) is the transition function,
– ρ : S → D(IR≥0) is the residence-time function, and
– L : S → 2AP is the labelling function.

The operational behaviour of an SMDP is as follows. The SMDP at a given
state s ∈ S, after receiving an input a ∈ A, goes to state s′ ∈ S within time
t with probability τ(s, a)(s′) · ρ(s)([0, t]). An SMDP is said to be finite if it
has a finite set of states. For s ∈ S, we will write Fs for the CDF of ρ(s), i.e.
Fs(t) = ρ(s)([0, t]).

Continuous-time Markov decision processes are a special case of SMDPs in
which all residence-time functions are exponentially distributed, and discrete-
time Markov decision processes are a special case of SMDPs where the residence-
time distribution in each state is the Dirac measure at 0, representing the fact
that transitions are taken instantaneously.

In defining simulation and bisimulation for SMDPs, we will use ingredients
from the definition of simulation and bisimulation for Markov decision processes
[21] and simulation and bisimulation for continuous-time Markov chains [3]. How-
ever, since we are also generalising to arbitrary distributions on time rather than
just exponential distributions, the condition on rates for exponential distribu-
tions must be replaced with a more general condition on the distributions. There
is a rich literature on so-called stochastic orders [22], which impose an ordering
on random variables. We will consider here the most commonly used of these,
known as the usual stochastic order.

Definition 2. For an SMDP M = (S, τ, ρ, L), a relation R ⊆ S × S is a simu-
lation (resp. bisimulation) on M if for all (s1, s2) ∈ R we have

1. L(s1) = L(s2),
2. Fs2(t) ≥ Fs1(t) (resp. Fs2(t) = Fs1(t)) for all t ∈ IR≥0, and
3. for all a ∈ A there exists a weight function or coupling ∆a : S × S → [0, 1]

between τ(s1, a) and τ(s2, a) such that
(a) ∆a(s, s′) > 0 implies (s, s′) ∈ R,
(b) τ(s1, a)(s) =

∑
s′∈S ∆a(s, s′) for all s ∈ S, and

(c) τ(s2, a)(s′) =
∑
s∈S ∆a(s, s′) for all s′ ∈ S.

We say that s2 simulates (resp. is bisimilar to) s1, written s1 � s2 (resp.
s1 ∼ s2), if there is a simulation (resp. bisimulation) relation containing (s1, s2).

It is easy to show that the similarity relation � is the largest simulation rela-
tion, and analogously that the bisimilarity relation ∼ is the largest bisimulation
relation. The coupling ensures that the simulation relation is preserved by suc-
cessor states. Intuitively, s1 simulates s2 if the CDF of ρ(s2) is pointwise greater
than or equal to the CDF of ρ(s1), and the transition probability distribution
of s1 can be matched by the transition probability function s2 by means of a
coupling, in such a way that if two successor states s′1 and s′2 have a non-zero
coupling, then s′1 again simulates s′2. For bisimulation, we instead require that
the CDFs behave exactly the same in each step.

Given a set C ⊆ S and a relation R ⊆ S × S, let

R(C) = {s′ ∈ S | (s, s′) ∈ R for some s ∈ C}

be the R-closure of C. If R is a preorder, R(C) is the upward closure of C.
The following result, which is a trivial generalisation of [25, Lemma 4.2.4],

gives a different but equivalent definition of simulation which is sometimes useful.

Proposition 1. For finite S, R ⊆ S × S is a simulation relation if and only if
for any (s1, s2) ∈ R the first two conditions for simulation are satisfied and

τ(s1, a)(C) ≤ τ(s2, a)(R(C)) , for all C ⊆ S .

The following generalises [3, Proposition 25(3)] to the case of SMDPs.

Proposition 2. � ∩�−1 = ∼.

The above is analogous to a result stating that bisimulation and simulation
equivalence coincide for deterministic labelled transition systems [2]. In our case,
Proposition 2 holds because reactive systems are inherently deterministic.

3 Comparing the Speed of Residence-Time Distributions

For comparing the random variables describing the residence time on states,
the similarity relation uses the usual stochastic order: if s1 � s2 then, for all

t ∈ IR≥0, Fs1(t) ≤ Fs2(t). In words, if s2 simulates s1, it is more likely that
s2 will take a transition before s1, that is, s2 is stochastically faster than s1 in
reacting to an input.

In this section, we propose a different way of comparing residence-time dis-
tributions. The idea is to get quantitative information about how much a distri-
bution should be accelerated to become at least as fast as another distribution.

Definition 3. Let F and G be CDFs and ε ∈ IR>0. We say that F is ε-faster
than G, written F vε G, if for all t we have F (ε · t) ≥ G(t).

Consider two states s1 and s2, having residence time governed by the distribu-
tions Fs1 and Fs2 , respectively, and assume that Fs1 vε Fs2 holds. If 0 < ε ≤ 1,
then this means that s1 is stochastically faster than s2, even if the residence
time in s1 is slowed down by a factor ε. If instead we have ε > 1, then s1 is
stochastically slower than s2, but if we accelerate its residence-time distribution
by a factor ε, then it becomes stochastically faster than s2.

In the rest of the section we will argue that vε is a good notion for gather-
ing quantitative information about the speed of residence-time distributions on
states. We will do this by comparing the most common distributions used in the
literature for modelling residence time on states on stochastic systems: Dirac
distributions, exponential distributions, and uniform distributions.

The Dirac measure at zero is the fastest measure, in the following sense.

Proposition 3. Let F be any CDF. The following holds for any ε ∈ IR>0.

1. Dirac[0] vε F .
2. If F 6= Dirac[0], then F 6vε Dirac[0].

For comparing exponential distributions, it is simple to show that it is enough
to accelerate by the ratio between the two rates. The same is true for uniform
distributions, except we also need to consider whether the uniform distributions
start at 0, since if a uniform distribution starts at 0, then we can only hope to
make another uniform distribution faster than it if this other uniform distribution
also starts at 0.

Proposition 4.

1. Exp[θ1] vε Exp[θ2], where ε = θ2
θ1

.
2. If c = 0 and a > 0, then Unif [a, b] 6vε Unif [c, d] for any ε ∈ IR>0.
3. If c = 0 and a = 0, then Unif [a, b] vε Unif [c, d], where ε = b

d .

4. If c > 0, then Unif [a, b] vε Unif [c, d], where ε = max
{
a
c ,

b
d

}
.

In all cases, the given ε is the least such that the ε-faster than relation holds.

Moreover, an exponential distribution can never be made faster than a uni-
form distribution, since uniform distributions become 1 eventually, whereas ex-
ponential distributions tend asymptotically to 1 but never reach it. Furthermore,
whether or not a uniform distribution can be made faster than an exponential
distribution depends on its value at 0.

Proposition 5.

1. Exp[θ] 6vε Unif [a, b] for all ε ∈ IR>0.
2. If a > 0, then Unif [a, b] 6vε Exp[θ] for all ε ∈ IR>0.
3. If a = 0, then Unif [a, b] vε Exp[θ], where ε = θ · b. Furthermore, this is the

least ε such that the ε-faster-than relation holds.

The ε-faster-than relation enjoys a kind of monotonicity property, which is
simply a consequence of the fact that CDFs are increasing.

Lemma 1. Let ε ≤ ε′ and assume that F vε G. Then F vε′ G.

The probability distribution of the sum of two independent random variables
is the convolution of their individual distributions. The general formula for the
convolution of two measures µ and ν on the real line is given by

(µ ∗ ν)(E) =

∫ ∞
0

ν(E − x) µ(dx) .

Notably, the ε-faster-than relation is a congruence with respect to convolution
of measures.

Proposition 6. If Fµ1 vε Fµ2 and Fν1 vε Fν2 , then F(µ1∗ν1) vε F(µ2∗ν2).

In Sect. 7.1 we will see that the above property is essential for the preservation
of reachability properties. Intuitively, this is because convolution corresponds to
sequential composition of the residence-time behaviour.

There are other possible ways to compare the relative speed of residence-
time distributions quantitatively. In the following we explore some alternative
definitions of the notion of the ε-faster-than relation, and argue that none of
them are preferable to the one given in Definition 3. Given two CDFs F and G,
we consider the following three alternative definitions of F vε G:

1. for all t, F (t) · ε ≥ G(t),
2. for all t, F (t) + ε ≥ G(t), and
3. for all t, F (ε+ t) ≥ G(t).

If vε is defined as in (1), then we see that Unif [a, b] 6vε Unif [c, d], for any
ε ∈ IR>0 whenever c < a. This is because Unif [a, b] (a) · ε = 0 < Unif [c, d] (a).
Hence we lose the properties of Proposition 4.

If vε is defined as in (2), we trivially get that whenever ε ≥ 1, F vε G, for
any two CDFs F and G. Hence (2) is only interesting for 0 ≤ ε < 1. However,
even in this case we would still lose the properties of Proposition 4. Indeed,
whenever a ≥ d, Unif [a, b] 6vε Unif [c, d], for any 0 ≤ ε < 1. This follows because
Unif [a, b] (a) + ε = ε < 1 = Unif [c, d] (a).

Lastly, if vε is defined as in (3), then it would not be a congruence with
respect to convolution of distributions, i.e., Proposition 6 would not hold. For a
counterexample, take Fµ1

= Unif [2, 4], Fµ2
= Unif [1, 3], Fν1 = Unif [3, 4], and

Fν2 = Unif [2, 4]. Then Fµ1 v1 Fµ2 and Fν1 v1 Fν2 , but F(µ1∗µ2) 6v1 F(ν1∗ν2).

4 A Hemimetric for Semi-Markov Decision Processes

In this section, we are going to extend the definition of simulation relation be-
tween SMDPs to the quantitative setting. We will see that this relation natu-
rally induces a notion of distance between SMDPs, describing the least accelera-
tion factor required globally on the residence-time distributions to make a given
SMDP as fast as another one.

Definition 4. Let ε ∈ IR>0. For an SMDP M = (S, τ, ρ, L), a relation R ⊆
S × S is a ε-simulation relation on M if for all (s1, s2) ∈ R we have that the
first and third condition for simulation are satisfied, and Fs2 vε Fs1 . We say
that s2 ε-simulates s1, written s1 �ε s2, if there is a ε-simulation relation R
such that (s1, s2) ∈ R.

Example 1. Let A = {a} and consider the SMDP M = (S, τ, ρ, L) given by
S = {s1, s2}, τ(s1, a)(s1) = 1 = τ(s2, a)(s2), Fs1 = Exp[4], Fs2 = Exp[2], and
L(s1) = L(s2). By Proposition 4 we see that s1 �2 s2 and s2 � 1

2
s1.

It is easy to show that the ε-similarity relation �ε is the largest simulation
relation, and with the previous section in mind, one immediately sees that �1

coincides with �. Moreover, the following holds.

Proposition 7. For any ε ≤ 1, if s1 �ε s2, then s1 � s2.

If ε > 1, the above implication does not hold. For an easy counterexample
consider s1 and s2 from Example 1 where s1 �2 s2 but s1 6� s2.

For ε > 1, we can obtain a result similar to Proposition 7 only if we “accel-
erate” the overall behaviour of s2. Formally, for a given SMDP M = (S, τ, ρ, L),
we define the SMDP Mε = (Sε, τε, ρε, Lε) as follows:

Sε = S ∪ {(s)ε | s ∈ S} ,
Lε(s) = L(s) ,

Lε((s)ε) = L(s) ,

ρε(s)([0, t]) = ρ(s)([0, t]) ,

ρε((s)ε)([0, t]) = ρ(s)([0, ε · t]) ,

τε(s, a)(s′) = τ(s, a)(s′) ,

τε(s, a)((s′)ε) = 0 ,

τε((s)ε, a)(s′) = 0 ,

τε((s)ε, a)((s′)ε) = τ(s, a)(s′) .

Intuitively, the states s ∈ S in Mε are identical copies of those in M , whereas
the states (s)ε react to each input a ∈ A functionally identically to s but faster,
since the residence-time on the states are all equally accelerated by a factor ε,
thus (s)ε �ε s. For this reason (s)ε is called the ε-acceleration of s.

Given the definition of accelerated state, Proposition 7 can be generalised to
arbitrary values of ε ∈ IR>0 in the following way.

Proposition 8. For any ε ∈ IR>0, s1 �ε s2 if and only if s1 � (s2)ε.

The relevance of the above statement is twofold: it clarifies the relation be-
tween �ε and �, and also provides a way to modify the behaviour of a state s2
of an SMDP in order to simulate a state s1 whenever s1 �ε s2 holds.

Having this characterisation of similarity in terms of acceleration of processes
one can think about the following problem: given two states, s1 and s2 such that
s1 6� s2, what is the least ε ≥ 1 (if it exists) such that s1 � (s2)ε holds? We can
answer this question by means of the following distance.

Definition 5. The simulation distance d : S×S → [1,∞] between two states s1
and s2 is given by

d(s1, s2) = inf{ε ≥ 1 | s1 �ε s2} .

As usual, if there is no ε ≥ 1 such that s1 �ε s2, then d(s1, s2) =∞, because
inf ∅ =∞. It is clear from the definition that s1 � s2 if and only if d(s1, s2) = 1.

Note that the definition above does not give a distance in the usual sense, for
two reasons: d is not symmetric and it does not satisfy the triangle inequality.
One can show instead that d satisfies a multiplicative version of the triangle
inequality, namely, that for all s1, s2, s3 ∈ S, d(s1, s3) ≤ d(s1, s2) ·d(s2, s3). This
is a direct consequence of the following properties of �ε. The first property states
that �ε is monotonic with respect to increasing values of ε.

Lemma 2. If s1 �ε s2 and ε ≤ ε′, then s1 �ε′ s2.

The second property is a quantitative generalisation of transitivity from
which the multiplicative inequality discussed above follows.

Lemma 3. If s1 �ε s2 and s2 �ε′ s3, then s1 �ε·ε′ s3.

Typically, one still uses the term distance for such multiplicative distances,
because by applying the logarithm one does obtain a hemimetric.

Theorem 1. log d(s1, s2) is a hemimetric.

Example 2. Consider again the SMDP from Example 1. We can now see that
d(s1, s2) = 2 and d(s2, s1) = 1

2 . This also shows that our distance is not sym-
metric, and hence not a pseudometric.

5 Computing the Simulation Distance

In this section we provide an algorithm to compute the simulation distance given
in Definition 5 for finite SMDPs. The algorithm is shown to run in polynomial
time for the distributions we have considered so far.

The following technical lemma will provide a sound basis for the correctness
of the algorithm. Given two CDFs F and G, let

c(F,G) = inf{ε ≥ 1 | F vε G}

denote the least acceleration factor needed by F to be faster than G.

Lemma 4. For an SMDP M , define the set C(M) = {c(Fs′ , Fs) | s, s′ ∈ S}. If
d(s1, s2) 6=∞, then

– s1 �c s2, for some c ∈ C(M) and
– d(s1, s2) = min{c ∈ C(M) | s1 �c s2}.

Lemma 4 provides a strategy for computing the simulation distance between
any two states s1 and s2 of a given SMDP M as follows. First, one constructs
the set C(M). If s1 �c s2 does not hold for any c ∈ C(M), then the distance
must be infinite; otherwise, it is the smallest c ∈ C(M) for which s1 �c s2 holds.

In order for this strategy to work, we need two ingredients: first, we should
be able to compute the set C(M) and second, for any c ∈ C(M), we need an
algorithm for checking whether s1 �c s2.

Recall that SMDPs allow for arbitrary residence-time distributions on states.
Therefore, it is not guaranteed that for any SMDP M the set C(M) can be
computed. With the following definition we identify the class of SMDPs for
which this can be done.

Definition 6. A class C of CDFs is effective if for any F,G ∈ C, c(F,G) is
computable. An SMDP M is effective if {Fs | s ∈ S} is an effective class.

In particular, for any pair of states s, s′ of an effective SMDP M , we can
decide whether Fs′ vε Fs by simply checking whether ε ≥ c(Fs′ , Fs). We will
denote by f(l) the complexity of computing c(Fs′ , Fs) for two arbitrary s, s′ ∈ S
as a function of the length l of the representation of the residence-time distribu-
tions of M .

Let CΛ denote the class consisting of the Dirac distribution at 0 as well as uni-
form and exponential distributions with rational parameters. By Propositions 3–
5 we immediately see that CΛ is an effective class, and in fact it can be computed
using only simple operations such as multiplication, division, and taking max-
imum. Hence f(l) has constant complexity1 whenever M takes residence-time
distributions from CΛ.

Next we consider how to decide s1 �ε s2 for a given rational ε ≥ 1. A
decision procedure can be obtained by adapting to our setting the algorithm by
Baier et al. [2] for deciding the simulation preorder between probabilistic labelled
transition systems. The algorithm from [2] uses a partition refinement approach
to compute the largest simulation relation and runs in time O(mn7/ log n) for
reactive systems, where m = |A| is the number of actions, and n = |S| is the
number of states. Given ε ≥ 1, we can proceed correspondingly to compute ε-
similarity: we start from the relation R = S × S and update it by removing
all the pairs (s, s′) of states not satisfying the conditions of Definition 4. This
process is repeated on the resulting updated relation until no more pairs of states
are removed. The resulting relation is the largest ε-simulation. Hence, checking
s1 �ε s2 corresponds to determining whether the pair (s1, s2) is contained in the
relation returned by the above algorithm.

Theorem 2. Let M be a finite and effective SMDP. Given s1, s2 ∈ S and ε ≥ 1,
deciding whether s1 �ε s2 can be done in time O(n2(f(l) + k) + (mn7)/ log n),
where k = |AP | is the number of atomic propositions.

1 As is standard, we consider numbers to be represented as floating points of bounded
size in their binary representation.

1 Order the elements of C(M) \ {∞} such that c1 < c2 < · · · < cn;
2 if s1 �c1 s2 then return c1 ;
3 else if s1 6�cn s2 then return ∞ ;
4 else
5 i← 1, j ← n;
6 while i < j do

7 h←
⌈
j−i
2

⌉
;

8 if s1 �cj−h s2 then j ← j − h ;

9 else i← i + h ;

10 end
11 return cj ;

12 end

Algorithm 1: Computing the simulation distance between s1 and s2.

The algorithm for computing the simulation distance is given in Algorithm 1.
The algorithm starts by ordering the elements of C(M) as c1, . . . , cn while remov-
ing ∞ from the list. Then it searches for the the smallest ci such that s1 �ci s2
holds. This is done by means of a bisection method. If s1 �c1 s2 holds, then c1
is the smallest element such that this holds, so we return it. If s1 �cn s2 does
not hold, then, by Lemma 2, s1 �ci s2 does not hold for any 1 ≤ i ≤ n, so we
return ∞. If none of the above apply, at this point of the algorithm (line 4) we
have that s1 6�c1 s2 and s1 �cn s2.

We use the variables i and j, respectively, as the left and right endpoints of
the bisection interval. The bisection interval keeps track of those elements cn
for which we still do not know whether s1 �cn s2. At the beginning, i = 1 and
j = n. At line 7, h =

⌈
j−i
2

⌉
is used as the decrement factor for the length of the

bisection interval at each step. Since h > 0, the bisection interval decreases in
size for each iteration. If s1 �cj−h s2 holds, then j − h is the current smallest
element in C(M) for which this holds, hence j − h will become the new right
endpoint of the interval; otherwise i+ h is the new left endpoint. The bisection
method stops when the endpoints meet or cross each other, at which point we
know that s1 6�cn s2 for all n < j and s1 �cn s2 for all n ≥ j, and hence we
return cj .

Computing the set C(M) at line 1 has complexity n2f(l), and sorting it can
be done in time O(n log n) using mergesort. By Theorem 2, and since we have
already computed C(M), each of the ε-simulation checks in lines 2, 3, and 8 can
be done in time O(n2k+ (mn7)/ log n), but the complexity n2k from comparing
labels only needs to computed once. Since the bisection interval is halved each
time, the while-loop is taken at most log n times. We therefore get an overall
time complexity of O(n2(f(l) + k) +mn7).

Theorem 3. Let M be a finite and effective SMDP. The simulation distance
between any two states can be computed in time O(n2(f(l) + k) +mn7).

6 Compositional Properties of the Simulation Distance

In this section we will prove that some natural notions of parallel composition
on SMDPs are non-expansive with respect to the simulation distance.

First we define what it means to compose two SMDPs in parallel. As argued
in [23], the style of synchronous CSP is the one that is most suitable for SMDPs,
so this is the one we will adopt here.

Definition 7. A function ? : D(IR≥0)×D(IR≥0)→ D(IR≥0) is a residence-time
composition function if it is commutative.

Definition 8. Let ? be a residence-time composition function. Then the ?-com-
position of M1 = (S1, τ1, ρ1, L1) and M2 = (S2, τ2, ρ2, L2), denoted M1 ‖?M2 =
(S, τ, ρ, L), is given as follows, for arbitrary s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2, and a ∈ A.

1. S = S1 × S2,
2. τ((s1, s2), a)((s′1, s

′
2)) = τ1(s1, a)(s′1) · τ2(s2, a)(s′2),

3. ρ((s1, s2)) = ?(ρ1(s1), ρ2(s2)), and
4. L(s1 ‖? s2) = L(s1) ∪ L(s2).

Given a composite system M1 ‖?M2 = (S, τ, ρ, L), we write s1 ‖? s2 to mean
(s1, s2) ∈ S. The residence-time composition function ? allows us to accommo-
date many different ways of combining timing behaviour, including those found
in the literature on process algebras. We recall here some of these.

Maximum composition: F?(µ,ν)(t) = max(Fµ(t), Fν(t)).

For exponential distributions, Fµ = Exp[θ] and Fν = Exp[θ′], the following
alternatives can be found.

Product rate composition: F?(µ,ν) = Exp[θ · θ′].
Minimum rate composition: F?(µ,ν) = Exp[min{θ, θ′}].
Maximum rate composition: F?(µ,ν) = Exp[max{θ, θ′}].

Maximum composition is used for interactive Markov chains [11], product
rate composition is used in SPA [12], minimum rate composition is used in
PEPA [13], and maximum rate composition is used in TIPP [10].

In order to have non-expansiveness for ?-composition of SMDPs, we will need
to restrict to residence-time composition functions ? that are monotonic.

Definition 9. A residence-time composition function ? is monotonic if for all
ε ≥ 1 and µ, ν, η ∈ D(IR≥0), it holds that Fµ vε Fν implies F?(µ,η) vε F?(ν,η).

Requiring monotonicity is not a significant restriction, as many of the com-
position functions that are found in the literature are indeed monotonic.

Lemma 5. Maximum composition as well as product, minimum, and maximum
rate composition are all monotonic.

Now we can prove that the ?-composition of finite SMDPs is non-expansive
with respect to the simulation distance, provided that ? is monotonic.

Theorem 4. For finite SMDPs and monotonic ?,

d(s1, s2) ≤ ε implies d(s1 ‖? s3, s2 ‖? s3) ≤ ε .

We conclude this section by exploring the computational aspects of compo-
sition of SMDPs. In particular, we would like to be able to also compute the
distance between composite systems.

By Lemma 4, we know that computing the simulation distance amounts to
being able to compute the constants c(Fs, Fs′), for each pair of states s, s′ of the
SMDP. Hence we would like that, whenever two distributions µ and ν have effec-
tive CDFs then also their composition ?(µ, ν) has an effective CDF. By Propo-
sition 4, it is easy to see that this holds for product, minimum, and maximum
rate composition, since these compositions are still exponential distributions.

For maximum composition, the class CΛ is unfortunately not closed under
composition. However, the following result holds.

Proposition 9. Let ? be maximum composition. For any µ, ν, η ∈ CΛ, the con-
stants c(Fµ, F?(ν,η)) and c(F?(µ,η), Fν) are computable.

The above results tells us that if we are interested in computing the distance
d(s1, s2 ‖? s3) or d(s1 ‖? s2, s3), when ? is maximum composition, then we can
indeed compute the constants c that are needed for Algorithm 1 to work.

7 Logical Properties of the Simulation Distance

If the distance between two processes is small, then we would also expect that
they satisfy almost the same properties. In order to make this idea precise, in
this section we introduce and study a slight extension of Markovian logic [15],
which we will call timed Markovian logic (TML). The syntax of TML is given
by the following grammar, where α ∈ AP , p ∈ Q≥0 ∩ [0, 1], t ∈ Q≥0, and a ∈ A.

TML : ϕ ::= α | ¬α | `pt | mpt | Lapϕ |Ma
pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

The semantics of TML is given by

s |= α iff α ∈ L(s) s |= `pt iff Fs(t) ≥ p
s |= ¬α iff α /∈ L(s) s |= mpt iff Fs(t) ≤ p
s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′ s |= Lapϕ iff τ(s, a)(JϕK) ≥ p
s |= ϕ ∨ ϕ′ iff s |= ϕ or s |= ϕ′ s |= Ma

pϕ iff τ(s, a)(JϕK) ≤ p

where JϕK = {s ∈ S | s |= ϕ} is the set of states satisfying ϕ.
We also isolate the following two fragments of TML.

TML≥ : ϕ ::= α | ¬α | `pt | Lapϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

TML≤ : ϕ ::= α | ¬α | mpt |Ma
pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

Intuitively, the formula Lapϕ says that the probability of taking an a-transition
to where ϕ holds is at least p, and Ma

pϕ says the probability is at most p. `pt

and mpt are similar in spirit, but talk about the probability of firing a transition
instead. Thus, `pt says that the probability of firing a transition before time t is
at least p, whereas mpt says that the probability is at most p.

For any ϕ ∈ TML and ε ≥ 1 we denote the ε-perturbation of ϕ by (ϕ)ε and
define it inductively as

(α)ε = α (`pt)ε = `pε · t (Lapϕ)ε = Lap(ϕ)ε (ϕ ∧ ϕ′)ε = (ϕ)ε ∧ (ϕ′)ε
(¬α)ε = ¬α (mpt)ε = mpε · t (Ma

pϕ)ε = Ma
p (ϕ)ε (ϕ ∨ ϕ′)ε = (ϕ)ε ∨ (ϕ′)ε .

By making use of the alternative characterisation for simulation given in
Proposition 1 and drawing upon ideas from [6], we can now prove the following
logical characterisation of the ε-simulation relation.

Theorem 5. Let ε ∈ Q≥0 with ε ≥ 1. For any finite SMDP, the following holds.

– s1 �ε s2 if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.
– s1 �ε s2 if and only if ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= (ϕ)ε.

As a special case of Theorem 5, we have also shown that TML≥ and TML≤

characterise simulation for SMDPs. Conceptually, Theorem 5 says that if s1 ε-
simulates s2, then s2 satisfies the ε-perturbation of any property that s2 satisfies
for the TML≥ fragment of TML, and vice versa for the TML≤ fragment.

By Lemma 4 and Theorem 5, we get the following corollary, connecting our
simulation distance with the properties expressible in the logic TML.

Corollary 1. Let ε ∈ Q≥0 with ε ≥ 1. For finite SMDPs the following holds.

– d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.
– d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= (ϕ)ε.

By Proposition 2, we also get a logical characterisation of bisimulation for
SMDPs in terms of TML, which is simpler than the one given in [17, 24].

Theorem 6. For any finite SMDP, it holds that

s1 ∼ s2 if and only if ∀ϕ ∈ TML. s1 |= ϕ ⇐⇒ s2 |= ϕ .

7.1 Reachability Properties

We will now argue that the simulation distance behaves nicely also with respect
to linear-time properties, by proving preservation of reachability properties up
to perturbations.

The probability of reaching a given set of states in an SMDP depends on
the choice of actions in each state. The non-determinism introduced by this
choice is typically resolved by means of schedulers. Here we consider probabilistic
schedulers σ of type S∗ → D(A), telling us what the probability is of selecting
an action a ∈ A depending on the history of the states visited so far. Given
a scheduler σ, we denote by Pσs (♦tX) the probability, under the scheduler σ,
that starting from the state s the SMDP will eventually reach a state in X ⊆ S
within time t ≥ 0 (for a rigorous definition of this probability see e.g. [17]).

Given our notion of ε-simulation, we can prove the following result.

Theorem 7. Let β be a Boolean combination of atomic propositions. If we have
s1 �ε s2, then for any scheduler σ there exists a scheduler σ′ such that

Pσs1(♦tJβK) ≤ Pσ
′

s2(♦ε·tJβK) (or equivalently, Pσs1(¬♦tJβK) ≥ Pσ
′

s2(¬♦ε·tJβK)) .

Note that the above result might find useful applications for speeding up the
computation time required by model checking tools to disprove certain types
of reachability properties. For example, consider the atomic proposition bad,
identifying all the states considered “not safe” in the SMDP. Usually, given a
process s, one wants to verify that, under all possible schedulers σ, the probability
Pσs (¬♦tJbadK) is above a certain threshold value δ ≤ 1, meaning that the SMDP
is unlikely to end up in an unsafe configuration within a time horizon bounded
by t. Then, to disprove this property one only needs to provide a scheduler σ′

and a process s′ such that s′ �ε s and Pσ′s′ (¬♦
t
ε JbadK) < δ. Indeed, given that

s′ �ε s, by Theorem 7

Pσ
′

s′

(
¬♦ t

ε JbadK
)
< δ

Th.7
=⇒ ∃σ. Pσs (¬♦tJbadK) < δ .

Since s simulates s′, s′ can be thought of as a simplified abstraction of s, which
is usually a smaller process. Hence, finding a scheduler σ′ for s′ which gives
a counterexample may be much simpler than finding one for s. Moreover, the
above technique is robust to perturbations of ε.

8 Conclusions and Open Problems

We have proposed a quantitative extension of the notion of simulation relation
on SMDPs, called ε-simulation, comparing the relative speed of different pro-
cesses. This quantitative notion of simulation relation induces a multiplicative
hemimetric, which we call simulation distance, measuring the least acceleration
factor needed by a process to speed up its actions in order to behave at least as
fast as another process.

We have given an efficient algorithm to compute the simulation distance and
identified a class of distributions for which the algorithm works on finite SMDPs.
Furthermore, we have shown that, under mild conditions on the composition of
residence-time distributions on states, a generalised version of CSP-like parallel
composition on SMDPs is non-expansive with respect to this distance, showing
that our distance is suitable for compositional reasoning. Lastly, we have shown
the connection between our distance and properties expressible in a timed exten-
sion of Markovian logic. Namely, we have shown that if the simulation distance
between s1 and s2 is at most ε, then s1 satisfies the ε-perturbation of any prop-
erty that s2 satisfies. This result also gives a novel logical characterisation of
simulation and bisimulation for semi-Markov decision processes.

Instead of using the usual stochastic order to relate the timing behaviour of
states as we have done, one could also consider many other kinds of stochastic or-
ders, for example ones that compare the expected value of the distributions. This

may be more natural for applications where one wants to consider an exponential
distribution with a high enough rate to be faster than a uniform distribution.

We have shown that the timing distributions that are obtained when compos-
ing systems are compatible with the algorithm for computing the distance only
in the case when composing systems either on the left or on the right. A more
general result showing that this also happens when composing on both sides an
arbitrary number of components seems difficult. Nonetheless, we are confident
that such a result can be obtained for any concrete case involving common types
of distributions used in the literature.

Since we have both a distance and a logical characterisation, it makes sense
to ask whether the set of states satisfying a formula is a closed or an open set in
the topology induced by the distance. If such a set is indeed closed, this means
that the approximate reasoning at the limit is sound: if every state in a sequence
satisfies a formula, then the limit of that sequence also satisfies the formula.
Such an investigation has already been done for Markovian logic [16], and some
of the ideas from there may carry over to our setting.

Acknowledgments. We thank the anonymous reviewers for helpful suggestions
as well as Robert Furber and Giovanni Bacci for insightful discussions. This
research was supported by the Danish FTP project ASAP, the ERC Advanced
Grant LASSO, and the Sino-Danish Basic Research Center IDEA4CPS.

References

[1] Mário S. Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Mor-
gan, Catuscia Palamidessi, and Geoffrey Smith. Additive and multiplicative no-
tions of leakage, and their capacities. In CSF, pages 308–322, 2014.

[2] Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisim-
ilarity and similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–
231, 2000.

[3] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Compar-
ative branching-time semantics for Markov chains. Inf. Comput., 200(2):149–214,
2005.

[4] Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and
Catuscia Palamidessi. Broadening the scope of differential privacy using metrics.
In PETS, pages 82–102, 2013.

[5] Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing
probabilistic bisimilarity. In FoSSaCS, pages 437–451, 2012.

[6] Josée Desharnais. Logical characterization of simulation for labelled Markov
chains. In PROBMIV, pages 33–48. University of Birmingham, Technical Re-
port, CS-99-8, August 1999.

[7] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

[8] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for
continuous Markov decision processes. SIAM J. Comput., 40(6):1662–1714, 2011.

[9] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning
for probabilistic concurrent systems. In Proc. IFIP TC2 Working Conference on
Programming Concepts and Methods, pages 443–458. North-Holland, 1990.

[10] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. Multiprocessor and dis-
tributed system design: The integration of functional specification and perfor-
mance analysis using stochastic process algebras. In Lorenzo Donatiello and Ran-
dolph D. Nelson, editors, Performance Evaluation of Computer and Communica-
tion Systems, volume 729 of Lecture Notes in Computer Science, pages 121–146.
Springer, 1993.

[11] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality,
volume 2428 of Lecture Notes in Computer Science. Springer, 2002.

[12] Holger Hermanns, Ulrich Herzog, and Vassilis Mertsiotakis. Stochastic process al-
gebras - between LOTOS and Markov chains. Computer Networks, 30(9-10):901–
924, 1998.

[13] Jane Hillston. A Compositional Approach to Performance Modelling. Distin-
guished Dissertations in Computer Science. Cambridge University Press, 2005.

[14] Chi-Chang Jou and Scott A. Smolka. Equivalences, congruences, and complete
axiomatizations for probabilistic processes. In CONCUR, pages 367–383, 1990.

[15] Dexter Kozen, Radu Mardare, and Prakash Panangaden. Strong completeness for
Markovian logics. In MFCS, pages 655–666, 2013.

[16] Kim Guldstrand Larsen, Radu Mardare, and Prakash Panangaden. Taking it to
the limit: Approximate reasoning for Markov processes. In MFCS, pages 681–692,
2012.

[17] Martin R. Neuhäußer and Joost-Pieter Katoen. Bisimulation and logical preserva-
tion for continuous-time Markov decision processes. In CONCUR, pages 412–427,
2007.

[18] Mathias R. Pedersen, Giorgio Bacci, Kim G. Larsen, and Radu Mardare.
A hemimetric extension of simulation for semi-Markov decision processes.
Technical report, Aalborg University, Department of Computer Science, 2018.
http://people.cs.aau.dk/mrp/pubs/simuldist.pdf.

[19] Mihael Perman, Andrej Senegacnik, and Matija Tuma. Semi-Markov models with
an application to power-plant reliability analysis. IEEE Transactions on Reliabil-
ity, 46(4):526–532, Dec 1997.

[20] Antonio Pievatolo, Enrico Tironi, and Ivan Valade. Semi-Markov processes for
power system reliability assessment with application to uninterruptible power sup-
ply. IEEE Transactions on Power Systems, 19(3):1326–1333, Aug 2004.

[21] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic
processes. Nord. J. Comput., 2(2):250–273, 1995.

[22] Moshe Shaked and George Shanthikumar. Stochastic Orders. Springer Series in
Statistics. Springer, 2007.

[23] Ana Sokolova and Erik P. de Vink. Probabilistic automata: System types, par-
allel composition and comparison. In Christel Baier, Boudewijn R. Haverkort,
Holger Hermanns, Joost-Pieter Katoen, and Markus Siegle, editors, Validation of
Stochastic Systems - A Guide to Current Research, volume 2925 of Lecture Notes
in Computer Science, pages 1–43. Springer, 2004.

[24] Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Bisimulations and logical char-
acterizations on continuous-time Markov decision processes. In VMCAI, pages
98–117, 2014.

[25] Lijun Zhang. Decision algorithms for probabilistic simulations. PhD thesis, Saar-
land University, Saarbrücken, Germany, 2009.

A Proofs

Lemma 6. For ε ∈ IR>0 it holds that Exp[θ] (ε · t) = Exp[ε · θ] (t).

Proof.

Exp[θ] (ε · t) = 1− e−θ·(ε·t) = 1− e−(θ·ε)·t = Exp[ε · θ] (t) .

ut

Lemma 7. For ε ∈ IR>0 it holds that Unif [a, b] (ε · t) = Unif
[
a
ε ,

b
ε

]
(t).

Proof.
ε · t− a
b− a

= 0 =⇒ ε · t− a = 0 =⇒ t =
a

ε

and
ε · t− a
b− a

= 1 =⇒ ε · t− a = b− a =⇒ t =
b

ε
.

Hence Unif [a, b] (ε · t) = Unif
[
a
ε ,

b
ε

]
(t). ut

Proof (of Proposition 2). First assume that s1 ∼ s2. Then L(s1) = L(s2). Also,
Fs2(t) = Fs2(t) for all t, so clearly Fs2(t) ≥ Fs1(t) and Fs1(t) ≥ Fs2(t) for all t.
For any subset C ⊆ S we have

τ(s1, a)(C) ≤ τ(s1, a)(∼(C)) = τ(s2, a)(∼(C))

and
τ(s2, a)(C) ≤ τ(s2, a)(∼(C)) = τ(s1, a)(∼(C)) ,

so s1 � s2 and s1 �−1 s2.
Now assume that s1 � s2 and s1 �−1 s2. Clearly L(s1) = L(s2). Since

Fs2(t) ≥ Fs1(t) and Fs1(t) ≥ Fs2(t) for all t, it follows that Fs2(t) = Fs1(t) for
all t. Now take an arbitrary subset C ⊆ S and let B = � ∩ �−1(C), C1 = �(B),
and C2 = C1 \B. Then

τ(s1, a)(C1) = τ(s1, a)(�(C1)) ≤ τ(s2, a)(�(C1)) = τ(s2, a)(C1)

and

τ(s2, a)(C1) = τ(s2, a)(�(C1)) ≤ τ(s1, a)(�(C1)) = τ(s1, a)(C1) ,

so τ(s1, a)(C1) = τ(s2, a)(C1), and likewise we can show that τ(s1, a)(C2) =
τ(s2, a)(C2). Since we can write

τ(s1, a)(C1) = τ(s1, a)(B) + τ(s1, a)(C2)

and
τ(s2, a)(C1) = τ(s2, a)(B) + τ(s2, a)(C2) ,

this together implies that τ(s1, a)(B) = τ(s2, a)(B). Hence we conclude that
s1 ∼ s2. ut

Proof (of Proposition 3). The first point is clear, since Dirac[0] (t) = 1 ≥ F (t)
for any t.

For the second point, Dirac[0] is the only CDF such that Dirac[0] (0) = 1,
and hence F (ε · 0) < Dirac[0] (0) for any ε ≥ 1. ut

Proof (of Proposition 4).

1. We see that

Exp[θ1] (ε · t) = 1− e−θ1ε·t = 1− e−θ2t = Exp[θ2] (t) .

If ε′ < ε, then take some t > 0 to get

Exp[θ1] (ε′ · t) = 1− e−θ1ε
′·t < 1− e−θ1ε·t = Exp[θ2] (t) ,

and hence Exp[θ1] 6vε′ Exp[θ2].
2. Let c = 0 and a > 0. Take an arbitrary ε ∈ IR>0 and let t = a

ε > 0 in order
to get Unif [a, b] (ε · t) = Unif [a, b] (a) = 0. However, Unif [c, d] (t) > 0 for
any t > 0, so Unif [a, b] (ε · t) < Unif [c, d] (t).

3. Let c = 0 and a = 0, and take ε = b
d . Then

Unif [a, b] (ε · t) = Unif

[
a · d

b
, d

]
(t) = Unif [0, d] (t) = Unif [c, d] (t) .

To show that it is the least ε such that the ε-faster-than relation holds, let
ε′ < b

d . Then

Unif [a, b] (ε′ · d) < Unif [a, b]

(
b

d
· d
)

= 1 = Unif [c, d] (d) .

4. Now let c > 0 and ε = max{ac ,
b
d}. If max{ac ,

b
d} = a

c , then Unif [a, b] (ε · t) =

Unif
[
c, b · ca

]
(t). Since a

c ≥
b
d we get c

a ≤
d
b , and hence

Unif
[
c, b · c

a

]
(t) ≥ Unif

[
c, b · d

b

]
(t) = Unif [c, d] (t) .

On the other hand, if max{ac ,
b
d} = b

d , then we get c
a ≥

d
b , and hence

Unif [a, b] (ε · t) = Unif

[
a · d

b
, d

]
(t) ≥ Unif [c, d] (t) .

It remains to prove that this is the least ε such that this relation holds.
Let ε′ < max{ac ,

b
d}. If max{ac ,

b
d} = a

c , then let t = a
ε′ >

a
a
c

= c. Then

Unif [a, b] (ε′ · t) = Unif [a, b] (a) = 0, but Unif [c, d] (t) > 0 since t > c. On
the other hand, if max{ac ,

b
d} = b

d , then

Unif [a, b] (ε′ · d) < Unif [a, b]

(
b

d
· d
)

= 1 = Unif [c, d] (d) .

ut

Proof (of Proposition 5).

1. We have Unif [a, b] (b) = 1, but Exp[θ] (t) < 1 for all t, and hence Exp[θ] 6vε
Unif [a, b] for any ε ∈ IR>0.

2. If a > 0, then let ε ∈ IR>0 be given, and let t = a
ε . Then Unif [a, b] (ε · t) =

Unif [a, b] (a) = 0, but Exp[θ] (t) > 0 since t > 0, and therefore Unif [a, b] 6vε
Exp[θ].

3. If a = 0, then let ε = θ · b. Clearly Unif [a, b] (ε · 0) = 0 and Exp[θ] (0) =
0. We see that Unif [a, b] (ε · t) = θbt

b and Exp[θ] (t) = 1 − e−θt have the
same derivative from the right at 0, namely θ. Hence the slope of these two
functions is the same in 0, but since the slope of an exponential distribution
is always decreasing, this means that Unif [a, b] vε Exp[θ]. If ε′ < θ · b, then
the slope in 0 of Unif [a, b] (ε′ · t) must be less than that of Exp[θ], so there
will exist some t > 0 such that Unif [a, b] (ε′ · t) < Exp[θ] (t), and hence
Unif [a, b] 6vε′ Exp[θ].

ut

Proof (of Lemma 1). F vε G means that F (ε · t) ≥ G(t) for all t. Since F is
non-decreasing and ε ≤ ε′, this means that F (ε′ · t) ≥ F (ε · t) ≥ G(t) for all t,
so F vε′ G. ut

Proof (of Proposition 6). Define the transformation T (x) = ε·x and let ν′1([0, t]) =
ν1
([

0, tε
])

. Then we see that

ν1(T−1([0, t])) = ν1({x | x · ε ∈ [0, t]})
= ν1 ({x | x ∈ [0, t/ε]})

= ν1

([
0,
t

ε

])
= ν′1([0, t]) .

Because Fµ1 vε Fµ2 we know that µ1([0, ε · t]) ≥ µ2([0, t]) for all t, and since
Fν1 vε Fν2 , we know that ν1([0, ε · t) = ν′1([0, t]) ≥ ν2([0, t]) for all t. We can
therefore do following series of transformations.

(µ1 ∗ ν1)([0, ε · t]) =

∫ ∞
0

µ1([0, ε · t− x]) ν1(dx)

=

∫ ∞
0

µ1([0, ε · t− T (x)]) ν′1(dx)

=

∫ ∞
0

µ1([0, ε(t− x)) ν′1(dx)

≥
∫ ∞
0

µ2([0, t− x]) ν′1(dx)

≥
∫ ∞
0

µ2([0, t− x]) ν2(dx)

= (µ2 ∗ ν2)([0, t]) .

ut

Proof (of Proposition 7). Let R ⊆ S × S be a ε-simulation relation such that
(s1, s2) ∈ R. We will now argue that R is also a simulation relation. The first
condition is clear. For the second condition, we have

Fs2(t) ≥ Fs2(ε · t) ≥ Fs1(t) .

The third condition is satisfied because R is a ε-simulation relation. ut

Proof (of Proposition 8). (=⇒) Let R ⊆ S × S be a ε-simulation relation with
(s1, s2) ∈ R. Define

R′ = {(s, (s′)ε ∈ Sε × Sε | (s, s′) ∈ R} ,

and take an arbitrary (s, (s′)ε) ∈ R′. The first condition of Definition 4 is satisfied
because F(s′)ε(t) = Fs′(ε · t) ≥ Fs(t).

For the second condition, we know that for any a ∈ A there exists a coupling
∆a, and we now define

∆′a(s′′, s′′′) =

{
0 if s′′ /∈ S or s′′′ ∈ S
∆a(s′′, s′′′) otherwise.

Since

∆′a(s′′, (s′′′)ε) > 0 =⇒ ∆a(s′′, s′′′) > 0

=⇒ (s′′, s′′′) ∈ R
=⇒ (s′′, (s′′′)ε) ∈ R′ ,

condition (a) is also satisfied. For condition (b), first consider the case where
s′′ ∈ S. Then we get∑

s′′′∈Sε

∆′a(s′′, s′′′) =
∑

(s′′′)ε∈Sε

∆′a(s′′, (s′′′)ε)

=
∑
s′′′∈S

∆a(s′′, s′′′)

= τ(s, a)(s′′)

= τε(s, a)(s′′) .

For the case where s′′ /∈ S we get∑
s′′′∈Sε

∆′a(s′′, s′′′) = 0

and
τε(s, a)(s′′) = 0 .

Likewise, for condition (c), first consider the case where s′′′ ∈ S. Then∑
s′′∈Sε

∆′a(s′′, s′′′) = 0

and

τε((s
′)ε, a)(s′′′) = 0 .

For the case where s′′′ /∈ S, we get∑
s′′∈Sε

∆′a(s′′, s′′′) =
∑
s′′∈S

∆′a(s′′, s′′′)

=
∑
s′′∈S

∆a(s′′, s′′′)

= τ(s′, a)(s′′′)

= τε((s
′)ε, a)((s′′′)ε) .

(⇐=) Let R ⊆ Sε × Sε be a simulation relation with (s1, (s2)ε) ∈ R and
define

R′ = {(s, s′) ∈ S × S | (s, (s′)ε) ∈ R} .

For an arbitrary (s, s′) ∈ R′ we get Fs′(ε · t) = F(s′)ε ≥ Fs1(t), thus satisfying
the first condition.

We know that for any a ∈ A there exists a coupling ∆a, and we now define

∆′a(s′′, s′′′) = ∆a(s′′, (s′′′)ε) .

This coupling satisfies condition (a) because

∆′a(s′′, s′′′) > 0 =⇒ ∆a(s′′, (s′′′)ε) > 0

=⇒ (s′′, (s′′′)ε) ∈ R
=⇒ (s′′, s′′′) ∈ R′ .

For condition (b), we see that∑
s′′′∈S

∆′a(s′′, s′′′) =
∑

(s′′′)ε∈Sε

∆a(s′′, (s′′′)ε)

= τε(s, a)(s′′)

= τ(s, a)(s′′) .

Likewise, for condition (c) we have∑
s′′∈S

∆′a(s′′, s′′′) =
∑
s′′∈S

∆a(s′′, (s′′′)ε)

= τε((s
′)ε, a)((s′′′)ε)

= τ(s′, a)(s′′′) .

ut

Proof (of Lemma 2). This follows from Lemma 1. ut

Proof (of Lemma 3). Since s1 �ε s2 and s2 �ε′ s3, there exists a ε-simulation
relation R such that (s1, s2) ∈ R and a ε′-simulation relation R′ such that
(s2, s3) ∈ R′. First construct a relation

R′′ = R ◦R′ = {(s′1, s′3) ∈ S × S | ∃s′2.((s′1, s′2) ∈ R and (s′2, s
′
3) ∈ R′)} .

Now pick an arbitrary pair (s′1, s
′
3) ∈ R′′. Clearly there exists s′2 such that

(s′1, s
′
2) ∈ R and (s′2, s

′
3) ∈ R′. Hence L(s′1) = L(s′2) = L(s′3) and Fs′2(ε · t) ≥

Fs′1(t) and Fs′3(ε′ ·ε·t) ≥ Fs′2(ε·t), so Fs′3(ε′ ·ε·t) ≥ Fs′1(t), meaning Fs′3 vε·ε′ Fs′1 .
Thus the first and second conditions are satisfied.

Now let a ∈ A. There exists a coupling ∆a between τ(s′1, a) and τ(s′2, a) and
another coupling ∆′a between τ(s′2, a) and τ(s′3, a). Next we construct a coupling
between τ(s′1, a) and τ(s′3, a) by

∆′′a(s, s′′) =
∑

s′∈supp(τ(s′2,a))

∆a(s, s′) ·∆′a(s′, s′′)

τ(s′2, a)(s′)
. (1)

We first verify that this is a coupling.∑
s′′∈S

∆′′a(s, s′′) =
∑
s′′∈S

∑
s′∈supp(τ(s2,a))

∆a(s, s′) ·∆′a(s′, s′′)

τ(s2, a)(s′)

=
∑

s′∈supp(τ(s2,a))

∆a(s, s′) ·
∑
s′′∈S ∆

′
a(s′, s′′)

τ(s2, a)(s′)

=
∑

s′∈supp(τ(s2,a))

∆a(s, s′) · τ(s2, a)(s′)

τ(s2, a)(s′)

=
∑

s′∈supp(τ(s2,a))

∆a(s, s′)

= τ(s1, a)(s) ,

and likewise we can show that
∑
s∈S ∆

′′
a(s, s′′) = τ(s3, a)(s′′). Now assume

∆′′a(s, s′′) > 0. By (1), this means that there must exist some s′ ∈ supp(τ(s′2, a))
such that ∆a(s, s′) > 0 and ∆′a(s′, s′′) > 0. This implies that (s, s′) ∈ R and
(s′, s′′) ∈ R′, so by the construction of R′′ we get (s, s′′) ∈ R′′.

Hence we have shown that R′′ is an ε · ε′-simulation relation. Since clearly
(s1, s3) ∈ R′′, it follows that s1 �ε·ε′ s3. ut

Proof (of Theorem 1). Let dlog(s1, s2) = log d(s1, s2). Clearly, dlog(s1, s2) ≥ 0,
and since d(s, s) = 1, dlog(s, s) = log(1) = 0. Hence it only remains to verify the
triangle inequality.

If d(s1, s2) · d(s2, s3) = ∞, then clearly d(s1, s3) ≤ d(s1, s2) · d(s2, s3). If
d(s1, s2) ·d(s2, s3) 6=∞, then the sets {ε ≥ 1 | s1 �ε s2} and {ε′ ≥ 1 | s2 �ε′ s3}
are both non-empty, so there must exist ε, ε′ ≥ 1 such that s1 �ε s2 and s2 �ε′
s3, so by Lemma 3 we have s1 �ε·ε′ s3, and hence d(s1, s3) 6= ∞. Taking the
contrapositive of this, we get that d(s1, s3) =∞ implies that d(s1, s2)·d(s2, s3) =
∞, and hence also d(s1, s3) ≤ d(s1, s2) · d(s2, s3).

Now assume that d(s1, s3) 6= ∞ and d(s1, s2) · d(s2, s3) 6= ∞, and assume
towards a contradiction that d(s1, s3) > d(s1, s2) · d(s2, s3). Since d is defined as
an infimum, there must exist ε, ε′ ≥ 1 such that s1 �ε s2, s2 �ε′ s3, and

d(s1, s3) > ε · ε′ ≥ d(s1, s2) · d(s2, s3) .

However, by Lemma 3 we have ε · ε′ ≥ d(s1, s3), a contradiction. Hence we get
d(s1, s3) ≤ d(s1, s2) · d(s2, s3), and by taking logarithms, we get dlog(s1, s3) ≤
dlog(s1, s2) + dlog(s2, s3). ut

Proof (of Lemma 4). For the first claim, note that d(s1, s2) 6= ∞ implies that
s1 �ε s2 for some ε ≥ 1. This is witnessed by some ε-simulation relation which
we denote by R. Now let

c∗ = max{c ∈ C(M) | c = cρ(s′),ρ(s) for some (s, s′) ∈ R} .

Then it is clear that R is also a c∗-simulation relation, and hence s1 �c∗ s2.
For the second claim, let

c∗ = min{c ∈ C(M) | s1 �c s2}

and
X = {ε ≥ 1 | s1 �ε s2} .

We first show that c∗ is a lower bound of X. If s1 �ε s2, then by the previous
argument we also have s1 �c∗ s2. Note that ε ≥ c∗, because otherwise we would
have had Fs′ 6vε Fs for some (s, s′) ∈ R, contradicting the fact that R is a
ε-simulation relation. Hence

ε ≥ c∗ ≥ min{c ∈ C(M) | s1 �c s2} = c∗ ,

so c∗ is a lower bound of X. Next we show that c∗ is the greatest lower bound
of X. We know that s1 �c∗ s2, and hence c∗ ∈ X, so if ε > c∗, then ε can not be
a lower bound of X. Hence c∗ is the greatest lower bound of X, and therefore
we conclude that

c∗ = min{c ∈ C(M) | s1 �c s2} = inf X = d(s1, s2) .

ut

Proof (of Theorem 2). The algorithm for deciding s1 �ε s2 is essentially the
same as that for deciding untimed simulation from [2]. Since we have assumed
effectiveness, when choosing whether to remove a pair (s, s′) from the current
relation, we can check the conditions on Definition 4 in time n2f(l). Differently
from [2], we also need to check whether L(s) = L(s′). For this we assume that
the set of atomic propositions AP have an ordering AP = x0, x1, . . . , and that
L(s) is represented as a binary array where the ith entry in the array is 1 if
xi ∈ L(s), and 0 otherwise. Then checking whether L(s) = L(s′) amounts to
checking whether each array has the same entries, which can be done in time

k = |AP |. Comparing all pairs of states in this way therefore can be done in
time n2k. Since these comparisons are independent of the current state of the
relation, we can compute them beforehand and store the results.

The complexity analysis of [2] gives a complexity of O(mn7/ log n) for reac-
tive systems. Since the only thing we add is the comparisons on time behaviour
and labels, both of which we can compute beforehand and store the results of,
we get a complexity of O(n2(f(l) + k) + (mn7)/ log n). ut

Proof (of Theorem 3). Consider the algorithm described in Algorithm 1. The
correctness of the algorithm is given by Lemma 4. We will now argue that the
algorithm runs in time

(
n2(f(l) + k) + mn7). Computing the set C(M) has

complexity n2f(l). The sorting in line 1 of the algorithm can be done in time
O(n log n) using mergesort. The checks in line 2 and 3 each has complexity
O(n2k + mn7) by Theorem 2, but the cost of n2k is only incurred once, since
we store the result and use it in subsequent checks. The while loop halves the
number of elements left to check for each iteration, and hence it will loop at most
log n times. Since in each iteration we make the check in line 8, the complexity
of the while loop becomes O(log n ·mn7/ log n) = O(mn7). All in all, this leaves
us with a complexity of O(n2(f(l) + k) +mn7). ut

Proof (of Lemma 5). Let ε ≥ 1 and assume that Fµ(ε · t) ≥ Fν(t) for all t.
We first consider maximum composition. If F?(µ,η)(ε · t) = Fµ(ε · t), then

Fµ(ε · t) ≥ Fη(ε · t) ≥ Fη(t), so

F?(µ,η)(ε · t) = Fµ(ε · t) ≥ F?(ν,η)(t) .

On the other hand, consider the case where F?(µ,η)(ε · t) = Fη(ε · t). Then we
know that F?(µ,η)(ε·t) ≥ Fµ(ε·t) ≥ Fν(t). If it is the case that F?(ν,η)(t) = Fν(t),
then

F?(µ,η)(ε · t) ≥ Fν(t) = F?(ν,η)(t) .

If F?(ν,η)(t) = Fη(t), then

F?(µ,η)(ε · t) = Fη(ε · t) ≥ Fη(t) = F?(ν,η)(t) .

So we conclude that F?(µ,η)(t) ≥ F?(ν,η)(t′).
Next we consider the different rate compositions. Assume that Fµ = Exp[θ],

Fν = Exp[θ′], and Fη = Exp[θ′′]. Since we have assumed Fµ(ε · t) ≥ Fν(t) for all
t, this implies by Lemma 6 that ε · θ ≥ θ′.

For product rate composition, note that ε · θ ≥ θ′ implies ε · θ · θ′′ ≥ θ′ · θ′′.
Therefore

F?(µ,η)(ε·t) = Exp[θ · θ′′] (ε·t) = Exp[ε · θ · θ′′] (t) ≥ Exp[θ′ · θ′′] (t) = F?(ν,η)(t) .

For minimum rate composition, we want to show that min{ε · θ, ε · θ′′} ≥
min{θ′, θ′′}. If min{ε · θ, ε · θ′′} = ε · θ, then

min{ε · θ, ε · θ′′} = ε · θ ≥ θ′ ≥ min{θ′, θ′′} .

Otherwise, if min{ε · θ, ε · θ′′} = ε · θ′′, then

min{ε · θ, ε · θ′′} = ε · θ′′ ≥ θ′′ ≥ min{θ′, θ′′} .

Hence

F?(µ,η)(ε · t) = Exp[min{ε · θ, ε · θ′′}] (t) ≥ Exp[min{θ′, θ′′}] (t) = F?(ν,η)(t) .

For maximum composition, we see that if max{θ′, θ′′} = θ′, then

max{ε · θ, ε · θ′′} ≥ ε · θ ≥ θ′ = max{θ′, θ′′} ,

and if max{θ′, θ′′} = θ′′, then

max{ε · θ, ε · θ′′} ≥ ε · θ′′ ≥ θ′′ = max{θ′, θ′′} .

Hence

F?(µ,η)(ε · t) = Exp[max{ε · θ, ε · θ′′}] (t) ≥ Exp[max{θ′, θ′′}] (t) = F?(ν,η)(t) .

ut

Proof (of Theorem 4). Assume that d(s1, s2) ≤ ε. By Lemma 4, we have that
s1 �d(s1,s2) s2, so by Lemma 2 we get that s1 �ε s2. Hence, there exists a
ε-simulation relation R such that (s1, s2) ∈ R. Now construct

R′ = {(s′1 ‖? s3, s′2 ‖? s3) | (s′1, s′2) ∈ R and s3 ∈ S} ,

and we want to show that R′ is a ε-simulation relation.
Pick some (s′1 ‖? s3, s′2 ‖? s3) ∈ R′. Then we get

L(s′1 ‖? s3) = L(s′1) ∪ L(s3) = L(s′2) ∪ L(s3) = L(s′2 ‖? s3) .

Since ? is monotonic, we immediately get

?(ρ(s′2), ρ(s3))([0, ε · t]) ≥ ?(ρ(s′1), ρ(s3))([0, t])

for all t, so Fs′2‖?s3 vε Fs′1‖?s3 . Now let a ∈ A be an arbitrary action and define

∆′a(s′′1 ‖? s′3, s′′2 ‖? s′′3) =

{
0 if s′3 6= s′′3
∆a(s′′1 , s

′′
2) · τ(s3, a)(s′3) otherwise.

If ∆′a(s′′1 ‖?s′3, s′′2 ‖?s′′3) > 0, then s′3 = s′′3 and also ∆a(s′′1 , s
′′
2) > 0, so (s′′1 , s

′′
2) ∈ R,

and hence (s′′1 ‖? s′3, s′′2 ‖? s′′3) ∈ R′. Furthermore,∑
s′′2 ‖?s′′3

∆′a(s′′1 ‖? s′3, s′′2 ‖? s′′3) =
∑
s′′2

∆′a(s′′1 ‖? s′3, s′′2 ‖? s′3)

=
∑
s′′2

∆a(s′′1 , s
′′
2) · τ(s3, a)(s′3)

= τ(s3, a)(s′3) ·
∑
s′′2

∆a(s′′1 , s
′′
2)

= τ(s3, a)(s′3) · τ(s′1, a)(s′′1)

= τ(s′1 ‖? s3, a)(s′′1 ‖? s′3) ,

and likewise we can show that∑
s′′1 ‖?s′3

∆′a(s′′1 ‖? s′3, s′′2 ‖? s′′3) = τ(s′2 ‖? s3, a)(s′′2 ‖? s′′3) .

We have thus shown that R′ is a ε-simulation relation, and hence s1 ‖? s3 �ε
s2 ‖? s3. Clearly, this implies that d(s1 ‖? s3, s2 ‖? s3) ≤ ε. ut

Lemma 8. Let ? be maximum composition, and let µ1, µ2, ν1, and ν2 be mea-
sures. The following holds for any ε ∈ IR>0.

1. If one of µ1 and µ2 and one of ν1 and ν2 is the Dirac measure at 0, then
F?(µ1,µ2) vε F?(ν1,ν2).

2. If one of µ1 and µ2 is the Dirac measure at 0, but none of ν1 and ν2 are,
then F?(µ1,µ2) vε F?(ν1,ν2).

3. If none of µ1 and µ2 are the Dirac measure at 0, but one of ν1 and ν2 is,
then F?(µ1,µ2) 6vε F?(ν1,ν2).

Proof. 1. We get F?(µ1,µ2) = Dirac[0] and F?(ν1,ν2) = Dirac[0], so we can use
Proposition 3.

2. We get F?(µ1,µ2) = Dirac[0], so again we can use Proposition 3.
3. We get F?(ν1,ν2) = Dirac[0], and F?(µ1,µ2) 6= Dirac[0], so once more we can

use Proposition 3.
ut

Lemma 9. Let ? be maximum composition, and let Fµ1
= Exp[θ1], Fµ2

=
Exp[θ2], Fν1 = Exp[λ1], and Fν2 = Exp[λ2]. Then F?(µ1,µ2) vε F?(ν1,ν2) where

ε = max{λ1,λ2}
max{θ1,θ2} . Furthermore, this is the least ε such that the ε-faster-than rela-

tion holds.

Proof. We have four cases to consider:

1. max{θ1, θ2} = θ1 and max{λ1, λ2} = λ1, in which case F?(µ1,µ2) = Fµ1
and

F?(ν1,ν2) = Fν1 .
2. max{θ1, θ2} = θ2 and max{λ1, λ2} = λ1, in which case F?(µ1,µ2) = Fµ2

and
F?(ν1,ν2) = Fν1 .

3. max{θ1, θ2} = θ1 and max{λ1, λ2} = λ2, in which case F?(µ1,µ2) = Fµ1
and

F?(ν1,ν2) = Fν2 .
4. max{θ1, θ2} = θ2 and max{λ1, λ2} = λ2, in which case F?(µ1,µ2) = Fµ2

and
F?(ν1,ν2) = Fν2 .

In all cases, the result then follows from Proposition 4. ut

Lemma 10. Let ? be maximum composition and let Fµ = Unif [a, b] and Fν =
Unif [c, d]. If a ≤ c and d ≤ b, then F?(µ,ν)(t) ≤ Unif [a, d] (t) for all t.

Proof. Note first that if Fµ′ = Unif [a′, b′] and Fν′ = Unif [c′, d′] with a′ ≤ c′

and b′ ≤ d′, then clearly Unif [a′, b′] (t) ≥ Unif [c′, d′] (t) for all t.

Now, a ≤ a and d ≤ b, so Unif [a, d] (t) ≥ Unif [a, b] (t) for all t. Likewise,
a ≤ c and d ≤ d, so Unif [a, d] ≥ Unif [c, d] (t) for all t. Hence

Unif [a, d] (t) ≥ max{Unif [a, b] (t),Unif [c, d] (t)} = F?(µ,ν) .

ut

Lemma 11. Let ? be maximum composition, and let Fµ = Unif [a, b], Fν1 =
Unif [c1, d1], and Fν2 = Unif [c2, d2].

1. If min{c1, c2} = 0 and a > 0, then Fµ 6vε F?(ν1,ν2) for any ε.

2. If min{c1, c2} = 0 and a = 0, then Fµ vε F?(ν1,ν2) where ε = b
min{d1,d2} .

3. If min{c1, c2} > 0, then Fµ vε F?(ν1,ν2) where

ε = max

{
a

min{c1, c2}
,

b

min{d1, d2}

}
.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. Take t = a
ε > 0 to get

Fµ(ε · t) = Unif [a, b] (ε · t) = Unif [a, b] (a) = 0 .

However, since min{c1, c2} = 0, at least one of Unif [c1, d1] (t) > 0 and
Unif [c2, d2] (t) > 0 must hold, and hence F?(ν1,ν2)(t) > 0.

2. We get

Fµ(ε · t) = Unif

[
a · min{d1, d2}

b
,min{d1, d2}

]
(t)

= Unif [0,min{d1, d2}] (t)

≥ F?(ν1,ν2)(t) by Lemma 10 .

If ε′ < b
min{d1,d2} , then

Fµ(ε′ ·min{d1, d2})
= Unif [a, b] (ε′ ·min{d1, d2})

< Unif [a, b]

(
b

min{d1, d2}
·min{d1, d2}

)
= 1

= max{Unif [c1, d1] (min{d1, d2}),Unif [c2, d2] (min{d1, d2})}
= Fν1,ν2(min{d1, d2}) .

3. We consider each case separately.

Case c1 ≤ c2 and d1 ≤ d2: In this case we have F?(ν1,ν2) = Fν1 , so we can
use Proposition 4.

Case c1 ≤ c2 and d1 > d2: In this case we get ε = max
{
a
c1
, bd2

}
. If ε = a

c1
,

then c1
a ≤

d2
b , so

Fµ(ε · t) = Unif

[
c1, b ·

d2
b

]
(t)

≥ Unif

[
c1, b ·

d2
b

]
(t)

= Unif [c1, d2] (t)

≥ F?(ν1,ν2)(t) by Lemma 10 .

For any ε′ < a
c1

, let t = a
ε′ > c1. Then Fµ(ε′ · t) = Fµ(a) = 0, but

F?(ν1,ν2)(t) > 0 since c1 ≤ c2 and t > c1.

On the other hand, if ε = b
d2

, then d2
b ≤

c1
a . This means that

Fµ(ε · t) = Unif

[
a · d2

b
, d2

]
(t)

≥ Unif
[
a · c1

a
, d2

]
(t)

= Unif [c1, d2] (t)

≥ F?(ν1,ν2)(t) by Lemma 10 .

For any ε′ < b
d2

we get

Fµ(ε′ · d2) = Unif [a, b] (ε′ · d2)

< Unif [a, b] (
b

d2
· d2)

= 1

= F?(ν1,ν2)(d2)

because d1 > d2.

Case c1 > c2 and d1 ≤ d2: In this case we get ε = max
{
a
c2
, bd1

}
. If ε = a

c2
,

then c2
a ≤

d1
b , and hence

Fµ(ε · t) = Unif
[
c2, b ·

c2
a

]
(t)

≥ Unif

[
c2, b ·

d1
b

]
(t)

= Unif [c2, d1] (t)

≥ F?(ν1,ν2)(t) by Lemma 10 .

For any ε′ < a
c2

, let t = a
ε′ > c2 in order to get Fµ(ε′ ·t) = Unif [a, b] (a) =

0, but F?(ν1,ν2)(t) > 0 since c1 > c2 and t > c2.

On the other hand, if ε = b
d1

, then d1
b ≤

c2
a . Then we get

Fµ(ε · t) = Unif

[
a · d1

b
, d1

]
(t)

≥ Unif [c2, d1] (t)

≥ F?(ν1,ν2)(t) by Lemma 10 .

For any ε′ < b
d1

we get

Fµ(ε′ · d1) = Unif [a, b] (ε′ · d1)

< Unif [a, b] (
b

d1
· d1)

= 1

= F?(ν1,ν2)(d1)

since d1 ≤ d2.

Case c1 > c2 and d1 > d2: In this case we have F?(ν1,ν2) = Fν2 , so we can
use Proposition 4.

ut

Lemma 12. Let ? be maximum composition, and let Fµ = Exp[θ], Fν1 =
Unif [a, b], Fν2 = Unif [c, d]. Then Fµ 6vε F?(ν1,ν2) for any ε.

Proof. F?(ν1,ν2)(min{b, d}) = 1, but Fµ(t) < 1 for all t, so Fµ(ε · min{b, d}) <
F?(ν1,ν2)(min{b, d}) for any ε. ut

Lemma 13. Let ? be maximum composition, and let µ1 ∼ Exp[θ1], µ2 ∼ Unif [a, b],
ν1 ∼ Exp[θ2], and ν2 ∼ Unif [c, d].

1. Fµ1
6vε F?(ν1,ν2) for any ε.

2. If a > 0, then Fµ2 6vε F?(ν1,ν2) for any ε.

3. If a = 0 and 1
d−c ≥ θ2, then Fµ2 vε F?(ν1,ν2) where ε = b

d .

4. If a = 0 and 1
d−c < θ2, then Fµ2

vε F?(ν1,ν2) where ε = θ2 · b.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. F?(ν1,ν2)(d) = 1, but Fµ1(t) < 1 for all t, so Fµ1(ε · d) < F?(ν1,ν2)(d)
for any ε.

2. If a > 0, let ε ∈ IR>0 be given. Let t = a
ε > 0 to get F?(ν1,ν2)(t) ≥

Exp[θ2] (t) > 0 since t > 0, but Fµ2(ε · t) = Unif [a, b] (a) = 0, and hence
Fµ2

(ε · t) < FJν1,ν2K(t).

3. If a = 0 and 1
d−c ≥ θ2, then the slope of Unif [c, d] is greater than that of

Exp[θ2] until Unif [c, d] hits 1 and flattens out. Hence F?(ν1,ν2) = Unif [c, d],
so we can use Proposition 4 to get the result.

4. If a = 0 and 1
d−c < θ2, let ε = θ2 ·b. By Proposition 5 we then get Fµ2

(ε ·t) ≥
Exp[θ] (t) for all t. Since the slope of Unif

[
a
ε ,

b
ε

]
is θ2, it has greater slope

than Unif [c, d], and hence also Fµ2(ε · t) = Unif
[
a
ε ,

b
ε

]
(t) ≥ Unif [c, d] (t).

We therefore get Fµ2(ε · t) ≥ max{Exp[θ2] (t),Unif [c, d] (t)} = F?(ν1,ν2)(t). If

ε′ < θ2 · b, then the slope in 0 of Fµ2
(ε′ · t) = Unif

[
a
ε′ ,

b
ε′

]
(t) must be less

than that of Exp[θ2]. Hence there exists some t > 0 sufficiently close to 0
such that Fµ2

(ε′ · t) < Exp[θ2] (t) = F?(ν1,ν2)(t).
ut

Lemma 14. Let ? be maximum composition, and let Fµ1
= Unif [a1, b1], Fµ2

=
Unif [a2, b2], and Fν = Unif [c, d].

1. If c = 0 and min{a1, a2} > 0, then F?(µ1,µ2) 6vε Fν for any ε.

2. If c = 0 and a1 = a2 = 0, then F?(µ1,µ2) vε Fν where ε = min{b1,b2}
d .

3. If c = 0 and min{a1, a2} = 0 and either a1 < a2 and b1 ≤ b2 or a1 > a2 and

b1 > b2, then F?(µ1,µ2) vε Fν where ε = min{b1,b2}
d .

4. If c = 0 and min{a1, a2} = 0 and either a1 < a2 and b1 > b2 or a1 > a2 and

b1 ≤ b2, then F?(µ1,µ2) vε Fν where ε = max{b1,b2}
d .

5. If c > 0, a1 < a2, b1 > b2, 1
c− a1·cb1

≥ 1
d−c , and 1

d− a2·db2
≤ 1

d−c , then

F?(µ1,µ2) vε Fν where ε = min
{
a1
c ,

b2
d

}
.

6. If c > 0, a1 < a2, b1 > b2, 1
c− a1·cb1

< 1
d−c , and 1

d− a2·db2
≤ 1

d−c , then

F?(µ1,µ2) vε Fν where ε = b2
d .

7. If c > 0, a1 < a2, b1 > b2, 1
c− a1·cb1

≥ 1
d−c , and 1

d− a2·db2
> 1

d−c , then

F?(µ1,µ2) vε Fν where ε = a1
c .

8. If c > 0, a1 < a2, b1 > b2, 1
c− a1·cb1

< 1
d−c , and 1

d− a2·db2
> 1

d−c , then

F?(µ1,µ2) vε Fν where

ε =
(b1 − a1) · k

d · k − c · k − d · a1 + b1 · c

and k = a1·b2−a2·b1
a1−b1−a2+b2 .

9. If c > 0, a1 > a2, b1 < b2, 1
c− a2·cb2

≥ 1
d−c , and 1

d− a1·db1
≤ 1

d−c , then

F?(µ1,µ2) vε Fν where ε = min
{
a2
c ,

b1
d

}
.

10. If c > 0, a1 > a2, b1 < b2, 1
c− a2·cb2

< 1
d−c , and 1

d− a1·db1
≤ 1

d−c , then

F?(µ1,µ2) vε Fν where ε = b1
d .

11. If c > 0, a1 > a2, b1 < b2, 1
c− a2·cb2

≥ 1
d−c , and 1

d− a1·db1
> 1

d−c , then

F?(µ1,µ2) vε Fν where ε = a2
c .

12. If c > 0, a1 > a2, b1 < b2, 1
c− a2·cb2

< 1
d−c , and 1

d− a1·db1
> 1

d−c , then

F?(µ1,µ2) vε Fν where

ε =
(b2 − a2) · k

d · k − c · k − d · a2 + b2 · c

and k = a1·b2−a2·b1
a1−b1−a2+b2 .

13. Otherwise, F?(µ1,µ2) vε Fν where

ε = max

{
min{a1, a2}

c
,

min{b1, b2}
d

}
.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. Take an arbitrary ε ∈ IR>0 and let t = min{a1,a2}
ε > 0. Then F?(µ1,µ2)(ε·

t) = F?(µ1,µ2)(min{a1, a2}) = 0, but Fν(t) > 0 since c = 0 and t > 0. Hence
F?(µ1,µ2)(ε · t) < Fν(t).

2. If a1 = a2 = 0, then F?(µ1,µ2) = Unif [0,min{b1, b2}], so the result follows
from Proposition 4.

3. If a1 ≤ a2 and b1 ≤ b2, then F?(µ1,µ2) = Fµ1
, and if a1 > a2 and b1 > b2,

then F?(µ1,µ2) = Fµ2
. In either case, we can then use Proposition 4 to obtain

the result.

4. We consider here the case where a1 < a2 and b1 > b2. The case where a1 > a2
and b1 ≤ b2 is symmetrical, noting that if b1 = b2, then F?(µ1,µ2) = Fµ1

, in
which case the result follows from Proposition 4. We have c = min{a1, a2} =
a1 = 0 and ε = b1

d . Then

F?(µ1,µ2)(ε · t) ≥ Unif [a1, b1] (ε · t)

= Unif

[
a1 ·

d

b1
, b1 ·

d

b1

]
(t)

= Unif [0, d] (t)

= Unif [c, d] (t) .

To see that this is the least ε such that the ε-faster-than relation holds, first
note that Unif

[
a1
ε ,

b1
ε

]
and Unif

[
a2
ε ,

b2
ε

]
cross in the point

t =
a1 · b2 − a2 · b1

ε · (a1 − b1 − a2 + b2)

with 0 = a1 < a2 < t < b2 < b1. From this it follows that

1 > Unif [c, d] (t) = Unif [a1, b2] (ε · t) = Unif [a2, b2] (ε · t) > 0 .

Hence, if ε′ < ε we get

Unif [c, d] (t) = Unif [a1, b1] (ε · t) > Unif [a1, b2] (ε′ · t)

and

Unif [c, d] (t) = Unif [a2, b2] (ε · t) > Unif [a2, b2] (ε′ · t) ,

and therefore F?(µ1,µ2)(ε
′ · t) < Unif [c, d] (t).

5. 1
c− a1·cb1

≥ 1
d−c means that Unif [a1, b2] (a1c ·t) = Unif

[
c, b1 · ca1

]
(t) has greater

slope than Unif [c, d] (t), so

Unif [a1, b1] (
a1
c
· t) ≥ Unif [c, d] (t) .

Likewise, 1

d− a2·db2
≤ 1

d−c means that Unif [a2, b2] (b2d · t) = Unif
[
a2 · db2 , d

]
(t)

has smaller slope than Unif [c, d] (t), and hence

Unif [a2, b2] (
b2
d
· t) ≥ Unif [c, d] (t) .

We therefore conclude

F?(µ1,µ2)

(
min

{
a1
c
,
b2
d

}
· t
)
≥ Unif [c, d] (t) .

If ε′ < ε, first assume that ε = a1
c and let t = a1

ε′ > c. Then F?(µ1,µ2)(ε
′ · t) =

F?(µ1,µ2)(a1) = 0, but Unif [c, d] (t) > 0 since t > c. Now assume that ε = b2
d .

Then we get

F?(µ1,µ2)(ε
′ · d) < F?(µ1,µ2))(ε · d) = F?(µ1,µ2)(b2) = 1 = Unif [c, d] (d) .

6. This case is the same as case 5, only considering the part where ε = b2
d .

7. This case is the same as case 5, only considering the part where ε = a1
c .

8. ε and k are chosen such that k
ε is the point in which Unif

[
a1
ε ,

b1
ε

]
, Unif

[
a2
ε ,

b2
ε

]
,

and Unif [c, d] cross. Hence we get F?(µ1,µ2)

(
ε · kε

)
= Unif [c, d]

(
k
ε

)
. We have

F?(µ1,µ2)(ε · t) = Unif [a1, b1] (ε · t) ≥ Unif [c, d] (t)

for any t ≥ k
ε and

F?(µ1,µ2)(ε · t) = Unif [a2, b2] (ε · t) ≥ Unif [c, d] (t)

for any t ≤ k
ε . Hence we can conclude that F?(µ1,µ2)(ε · t) ≥ Unif [c, d] (t). If

ε′ < ε, then F?(µ1,µ2)

(
ε′ · kε

)
< F?(µ1,µ2)

(
ε · kε

)
= Unif [c, d]

(
k
ε

)
.

9. Symmetric to case 5.
10. Symmetric to case 6.
11. Symmetric to case 7.
12. Symmetric to case 8.
13. In this case, we either get F?(µ1,µ2) = Fµ1

or F?(µ1,µ2) = Fµ2
, and the result

is then obtained by applying Proposition 4.
ut

Lemma 15. Let ? be maximum composition, and let Fµ = Exp[θ], Fν1 =
Unif [a, b], Fν2 = Unif [c, d].

1. If min{a, c} > 0, then F?(ν1,ν2) 6vε Fµ for any ε.

2. If a = 0 and c > 0, then F?(ν1,ν2) vε Fµ where ε = θ · b.
3. If a > 0 and c = 0, then F?(ν1,ν2) vε Fµ where ε = θ · d.
4. If a = 0 and c = 0, then F?(ν1,ν2) vε Fµ where ε = θ ·min{b, d}.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. If min{a, c} > 0, let ε be given, and let t = min{a,c}
ε > 0. Then

F?(ν1,ν2)(ε · t) = F?(ν1,ν2)(min{a, c}) = 0

but Fµ(t) = Exp[θ] (t) > 0 since t > 0.
2. By Proposition 5, we know that Unif [a, b] vε Exp[θ]. Hence F?(ν1,ν2)(ε · t) ≥

Unif [a, b] (ε · t) ≥ Exp[θ] (t). If ε′ < θ · b, then there must exist some t > 0
sufficiently close to 0 such that F?(ν1,ν2)(ε

′ ·t) = Unif [a, b] (ε′ ·t) < Exp[θ] (t).
3. Similar to the case where a = 0 and c > 0.
4. If a = 0 and c = 0, then we get F?(ν1,ν2) = Unif [a, b] if b ≤ d and F?(ν1,ν2) =

Unif [c, d] if b > d. In either case, we can use Proposition 5 to obtain the
desired result.

ut

Lemma 16. Let ? be maximum composition, and let µ1 ∼ Exp[θ1], µ2 ∼ Unif [a, b],
ν1 ∼ Exp[θ2], and ν2 ∼ Unif [c, d].

1. If a = 0 and 1
b−a ≥ θ1, then F?(µ1,µ2) vε Fν1 where ε = θ2 · b.

2. If a > 0 or 1
b−a < θ1, then F?(µ1,µ2) vε Fν1 where ε = θ2

θ1
.

3. If 1
b−a ≥ θ1 and a = 0, then F?(µ1,µ2) vε Fν2 where ε = b

d .
4. Otherwise, F?(µ1,µ2) vε Fν2 where

ε = max

{
b

d
,

(b− a) · k
d · k − c · k − d · a+ b · c

}
,

k = b·θ1+W (θ1·(a−b)·e−b·θ1)
θ1

, and W is the Lambert W -function.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. In this case, F?(µ1,µ2) = Fµ2 , so we can use Proposition 5 to obtain
the result.

2. We get

F?(µ1,µ2)

(
θ2
θ1
· t
)
≥ Exp[θ1]

(
θ2
θ1
· t
)

= Exp[θ2] (t) = Fν1(t) .

To see that this is the least ε such that the ε-faster-than relation holds, first
note that because a > 0 or 1

b−a < θ1, there must be some interval [0, t] where

F?(µ1,µ2)(t
′) = Exp[θ1] (t′) for all t′ ∈ [0, t]. If ε′ < ε, then let t′ ∈

[
0, tε
]
, so

that ε · t′ ∈ [0, t], and also ε′ · t′ ∈ [0, t]. Then we get

F?(µ1,µ2)(ε
′ · t′) = Exp[θ1] (ε′ · t′) < Exp[θ1] (ε · t′) = Exp[θ2] (t′).

3. We get F?(µ1,µ2) = Fµ2
, so we can use Proposition 4.

4. In this case, Fµ1 and Fµ2 will cross in some non-zero point. k is chosen so
that

Fµ1(ε∗ · t∗) = Fµ2(ε∗ · t∗) = Fν2(t∗)

where

ε∗ =
(b− a) · k

d · k − c · k − d · a+ b · c
and

t∗ =
k

ε∗
.

This also means that

F?(µ1,µ2)(ε · t) =

{
Fµ1(ε · t) if t ≤ t∗

Fµ2(ε · t) if t ≥ t∗ .

Now, if ε = b
d , then Fµ2(ε · d) = Unif

[
a · db , d

]
(d) = Unif [c, d] (d), and

Fµ2(ε · t∗) ≥ Fµ2(ε∗ · t∗) = Fν2(t∗). Hence Fµ2(ε · t) ≥ Fν2(t) for all t ≥ t∗.
For t ≤ t∗ we get Fµ1

(ε · t) ≥ Fν2(t), and hence F?(µ1,µ2)(ε · t) ≥ Fν2(t). If
ε′ < ε, then F?(µ1,µ2)(ε

′ · d) < F?(µ1,µ2)(ε · d) = 1 = Unif [c, d] (d).
If ε = ε∗, then Fµ1(ε · t∗) = Fµ2(ε · t∗) = Fν2(t∗). Since

Fµ2
(ε · d) ≥ Fµ2

(
b

d
· d
)

= 1 = Unif [c, d] (d) ,

we get Fµ2
(ε · t) ≥ Fν2(t) for all t ≥ t∗. For t ≤ t∗ we get Fµ1

(ε · t) ≥ Fν2(t),
and hence we conclude F?(µ1,µ2)(ε · t) ≥ Fν2(t). If ε′ < ε, then F?(µ1,µ2)(ε

′ ·
t∗) < F?(µ1,µ2)(ε · t∗) = Fν2(t∗).

ut

Proof (of Proposition 9).

1. This follows from Lemmas 8, 9, 11, 12, and 13.
2. This follows from Lemmas 8, 9, 14, 15, and 16.

ut

Proof (of Theorem 5). We prove here the first item. The second item is com-
pletely symmetric.

(=⇒) We proceed by induction on ϕ. The cases of conjunction and disjunc-
tion are standard.

Case ϕ = α: s1 |= α means that α ∈ L(s1). Since L(s1) = L(s2) we then get
s2 |= α.

Case ϕ = ¬α: s1 |= ¬α means that α /∈ L(s1). Since L(s1) = L(s2) we then
get s2 |= ¬α.

Case ϕ = `pt: s1 |= `pt means that Fs1(t) ≥ p, and since Fs2(ε · t) ≥ Fs1(t),
we get s2 |= (ϕ)ε.

Case ϕ = Lapϕ
′: s1 |= Lapϕ

′ means that τ(s1, a)(Jϕ′K) ≥ p. There exists a
coupling ∆a(s, s′) such that

τ(s1, a)(Jϕ′K) =
∑
s∈Jϕ′K

τ(s1, a)(s)

=
∑
s∈Jϕ′K

∑
s′∈S

∆a(s, s′)

=
∑
s∈Jϕ′K

∑
s′∈J(ϕ′)εK

∆a(s, s′) (ind. hyp.)

=
∑

s′∈J(ϕ′)εK

τ(s2, a)(s′)

= τ(s2, a)(J(ϕ′)εK) ,

and hence s2 |= (ϕ)ε.

(⇐=) We construct the relation

R = {(s, s′) ∈ S × S | ∀ϕ ∈ TML≥.s |= ϕ =⇒ s′ |= ϕ}

and we must show that it is a ε-simulation relation. Let (s, s′) ∈ R be arbitrary.
We will first show that L(s) = L(s′). If α ∈ L(s), then s |= α, and hence s′ |= α,
which means that α ∈ L(s′). If α /∈ L(s), then s |= ¬α, implying that s′ |= ¬α,
so α /∈ L(s′). Therefore L(s) = L(s′).

Next we will show that Fs(t) ≤ Fs′(ε · t) for all t ∈ IR≥0. Assume towards a
contradiction that Fs(t) > Fs′(ε · t) for some t ∈ Q≥0. Then there exists q ∈ Q≥0
such that Fs(t) > q > Fs′(ε · t). But then s |= `qt whereas s′ 6|= `qε · t, which
contradicts how R was constructed. Hence Fs(t) ≤ Fs′(ε · t) for all t ∈ Q≥0. Now
assume towards a contradiction that Fs(t) > Fs′(ε · t) for some t ∈ IR≥0 and
let ε′ = Fs(t) − Fs′(ε · t) > 0. By right-continuity, there exists δ > 0 such that
ε · t < c < ε · t+ δ implies |Fs′(c)− Fs′(ε · t)| < ε′. Now pick some q ∈ Q≥0 such
that ε · t < q < ε · t+ δ. Then

Fs′(ε · t) ≤ Fs′(q) < Fs(t) ≤ Fs(q) ,

which is a contradiction. Hence we conclude that Fs(t) ≤ Fs′(ε·t) for all t ∈ IR≥0.

Finally we will show that τ(s, a)(C) ≤ τ(s, a)(R(C)) for all a and C ⊆ S.
Pick an arbitrary a and C ⊆ S. By a similar argument as before, we can show
that

τ(s, a)(JϕK) ≤ τ(s′, a)(JϕK) (2)

for all ϕ ∈ TML≥. The strategy will now be to construct a formula ϕ to exploit
the inequality in Equation (2). To do this, we introduce the following notation.
For a state s ∈ S, let

LsM = {ϕ ∈ TML≥ | s |= ϕ} and LsMε = {ϕ ∈ TML≥ | s |= (ϕ)ε} .

Given a formula ϕ ∈ TML≥, we let Q(ϕ) be the set of values t ∈ Q≥0 and
p ∈ Q≥0 ∩ [0, 1] that are used in ϕ. Furthermore, we define the depth dpt(ϕ) as

dpt(ϕ) =


0 if ϕ = `pt or ϕ = mpt ,

1 + dpt(ϕ′) if ϕ = Lapϕ
′, ϕ = Ma

pϕ
′, or ϕ = ¬ϕ′ ,

1 + max{dpt(ϕ1), dpt(ϕ2)} if ϕ = ϕ1 ∧ ϕ2 .

Finally, we let

Ik = {q ∈ Q≥0 | q = l · 1

j
for some l ∈ IN0 and j ∈ IN where l ≤ k and j ≤ k} .

Then we can define

Fk = {ϕ ∈ TML≥ | dpt(ϕ) ≤ k and Q ⊆ Ik}

as a finite fragment of TML≥ and

LsMk = LsM ∩ Fk = {ϕ ∈ Fk | s |= ϕ}

as the restriction of LsM to Fk. Intuitively, Fk is a better and better approximation
of all formulas of TML≥ as k increases. Formally, this means that

⋃
k∈IN Fk =

TML≥, and hence any formula in TML≥ will be in one of the Fk for some k.
Now we can construct a formula that describes the set R(C). Note that by
construction of R we have

R(C) = {s′ ∈ S | ∃s ∈ C.(s, s′) ∈ R} = {s′ ∈ S | ∃s ∈ C.LsM ⊆ Ls′Mε}

and we also have⋃
s∈C

⋂
ϕ∈LsM

J(ϕ)εK =
⋃
s∈C
{s′ ∈ S | LsM ⊆ Ls′Mε} = {s′ ∈ S | ∃s ∈ C.LsM ⊆ Ls′Mε} ,

so R(C) =
⋃
s∈C

⋂
ϕ∈LsMJ(ϕ)εK. Since we have assumed S to be finite, R(C) must

also be finite. Now let

χCk =
∨
s∈C

∧
ϕ∈LsMk

(ϕ)ε .

Because R(C) is finite, χCk consists of finitely many many disjunctions and con-
junctions and is hence a formula. This formula will be the one we use in Equation
(2). Now let Ck = JχCk K. Then we get a decreasing chain C1 ⊇ C2 ⊇ . . . of finite
sets, and we will now prove that

⋂
k∈IN Ck = R(C). If s′ ∈ R(C), then there

exists s ∈ C such that LsM ⊆ Ls′Mε, and hence s′ |=
∧
ϕ∈LsMk(ϕ)ε for all k, so

s′ ∈
⋂
k∈IN Ck. If s′ /∈ R(C), then for all s ∈ C there exists ϕs ∈ TML≥ such

that s |= ϕs but s′ 6|= (ϕs)ε. Since R(C) is finite, we can fix k′ such that ϕs ∈ Fk′
for all s ∈ C. Then s′ /∈ Ck′ because s′ 6|=

∨
s∈C

∧
ϕ∈LsMk′

(ϕ)ε since ϕs ∈ LsMk′ .
Therefore s′ /∈

⋂
k∈IN Ck, so we conclude that R(C) =

⋂
k∈IN Ck.

Now, by Equation (2), we get that

τ(s1, a)(Ck) = τ(s1, a)
(
JχCk K

)
≤ τ(s2, a)

(
JχCk K

)
= τ(s2, a)(Ck) .

By continuity of measures, this implies that

τ(s1, a)(R(C)) = τ(s1, a)

(⋂
k∈IN

Ck

)
≤ τ(s2, a)

(⋂
k∈IN

Ck

)
= τ(s2, a)(R(C)) ,

and since C ⊆ R(C), we obtain τ(s1, a)(C) ≤ τ(s2, a)(R(C)). ut

Proof (of Theorem 6). (=⇒) We prove that s1 |= ϕ implies s2 |= ϕ for all
ϕ ∈ TML. A symmetrical proof shows that also s2 |= ϕ implies s1 |= ϕ for all
ϕ ∈ TML. The proof proceeds by induction on ϕ. The cases of disjunction and
conjunction are standard, and the cases of ϕ = α and ϕ = ¬α are the same as
in the proof of Theorem 5.

Case ϕ = `pt: s1 |= `pt means Fs1(t) ≥ p, and since Fs1(t) = Fs2(t), we get
s2 |= `pt.

Case ϕ = mpt: Same argument as `pt.
Case ϕ = Lapϕ

′: s1 |= Lapϕ
′ means τ(s1, a)(Jϕ′K) ≥ p. We know that there

exists a coupling ∆a such that

τ(s1, a)(Jϕ′K) =
∑
s∈Jϕ′K

τ(s1, a)(s)

=
∑
s∈Jϕ′K

∑
s′∈S

∆a(s, s′)

=
∑
s∈Jϕ′K

∑
s′∈JϕK

∆a(s, s′) (ind. hyp.)

=
∑
s′∈JϕK

τ(s2, a)(s′)

= τ(s2, a)(JϕK) ,

so s2 |= Lapϕ
′.

Case ϕ = Ma
pϕ
′: Same argument as Lapϕ

′.
(⇐=) We have assumed that ∀ϕ ∈ TML.s1 |= ϕ ⇐⇒ s2 |= ϕ, and hence we

also get ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= ϕ and ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= ϕ.
By Theorem 5 we then get s1 � s2 and s2 � s1, and hence Proposition 2 implies
s1 ∼ s2. ut

Given an SMDP M = (S, τ, ρ, L), a path in M is a sequence

π = (s1, t1), (s2, t2), . . . ,

where si ∈ S and ti ∈ IR≥0. Intuitively, a path π denotes an execution of the
SMDP, where si denotes the ith state visited, and ti denotes the time spent in

si. We denote by Π(M) the set of all paths in M , and we let π[i] = si and
π〈i〉 = ti.

Let X ⊆ S. Then

♦tX = {π ∈ Π(M) | ∃i ∈ IN.π[i] ∈ X and

i−1∑
j=1

π〈j〉 ≤ t}

is the set of paths that eventually reach a state in X and does so within time t.
Given a sequence of states w = s1 . . . sk and a scheduler σ, we define a

probability

Pσw(S1) =
∑
a∈A

∑
s′∈S

τ(sk, a)(s′) · σ(w)(a) · ρ(sk)

Pσw(S1, S2, . . . , Sn) =
∑
a∈A

∑
s′∈S

τ(sk, a)(s′) · σ(w)(a) · (ρ(sk) ∗ Pσws′(S2, . . . , Sn))

through the usual cylinder construction. Then Pσs (S1, . . . , Sn)(t) is the probabil-
ity, starting from s and under the scheduler σ, to first visit a state in S1, then a
state in S2, and so on, until a state in Sn is reached, and the total time elapsed
is at most t.

Lemma 17. Let β be a boolean combination of atomic propositions and let w1 =
s1 . . . sk and w2 = s′1 . . . s

′
k. If sk �ε s′k, then for any scheduler σ there exists a

scheduler σ′ such that

Pσw1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t) ≤ Pσ
′

w2
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(ε · t)

for all n ∈ IN and t ∈ IR≥0.

Proof. Let R be a ε-simulation relation witnessing that s1 �ε s2.
Case n = 1: For each a ∈ A there exists a coupling ∆a such that

Pσw1
(JβK)(t) =

∑
a∈A

∑
s∈JβK

τ(sk, a)(s) · σ(w1)(a) · ρ(sk)(t)

=
∑
a∈A

∑
s∈JβK

∑
s′∈S

∆a(s, s′) · σ(w1)(a) · ρ(sk)(t) .

If s ∈ JβK and s′ /∈ JβK, then s 6�ε s′, and hence (s, s′) /∈ R, so ∆a(s, s′) = 0. We
therefore get

Pσw1
(JβK)(t) =

∑
a∈A

∑
s∈JβK

∑
s′∈JβK

∆a(s, s′) · σ(w1)(a) · ρ(sk)(t)

=
∑
a∈A

∑
s′∈JβK

∑
s∈JβK

∆a(s, s′) · σ(w1)(a) · ρ(sk)(t)

≤
∑
a∈A

∑
s′∈JβK

∑
s∈S

∆a(s, s′) · σ(w1)(a) · ρ(sk)(t)

=
∑
a∈A

∑
s′∈JβK

τ(s′k, a)(s′) · σ(w1)(a) · ρ(sk)(t) .

Now we define σ′(w2)(a) = σ(w1)(a) and observe that ρ(sk)(t) ≤ ρ(s′k)(ε · t)
since we have assumed sk �ε s′k. Hence we get

Pσw1
(JβK)(t) ≤

∑
a∈A

∑
s′∈JβK

τ(s′k, a)(s′) · σ′(w2)(a) · ρ(s′k)(ε · t)

= Pσ
′

w2
(JβK)(ε · t) .

Case n > 1: For any a ∈ A we again get a coupling ∆a such that

Pσw1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t)

=
∑
a∈A

∑
s∈JβKc

τ(sk, a)(s) · σ(w1)(a) · (ρ(sk) ∗ Pσw1s(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(t)

=
∑
a∈A

∑
s∈JβKc

∑
s′∈S

∆a(s, s′) · σ(w1)(a) · (ρ(sk) ∗ Pσw1s(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(t)

=
∑
a∈A

∑
s∈JβKc

∑
s′∈JβKc

∆a(s, s′) · σ(w1)(a) · (ρ(sk) ∗ Pσw1s(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(t) .

Since s 6�ε s′ implies ∆a(s, s′) = 0, any term where s 6�ε s′ contributes nothing
to the sum. Hence we may assume that s �ε s′. By induction hypothesis, we
then get that for any s′ there exists σ′s′ such that

Pσw1s(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK)(t) ≤ Pσ
′
s′
w2s′

(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK)(ε · t) .

By Proposition 6 we get

(ρ(sk)∗Pσw1s(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(t) ≤ (ρ(s′k)∗P
σ′
w2s
′

s′ (JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(ε · t) .

Now let σ′′(w2)(a) = σ(w1)(a) and σ′′(w2s
′)(a) = σ′s′(w2)(a) in order to obtain

Pσw1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t)

≤
∑
a∈A

∑
s′∈JβKc

τ(s′k, a)(s′) · σ′′(w2)(a) · (ρ(s′k) ∗ Pσ
′′

w2s′(JβKc, . . . , JβKc︸ ︷︷ ︸
n−2 times

, JβK))(ε · t)

= Pσ
′′

w2
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(ε · t) .

ut

Proof (of Theorem 7). First note that for any s and σ, we have

Pσs (♦tJβK) =
∑
n∈IN

Pσs (JβKtn) ,

where

JβKtn = {π ∈ Π(M) | π[n] ∈ JβK,∀k < n.π[k] /∈ JβK, and

n−1∑
j=1

π〈j〉 ≤ t} .

We will now argue that for any σ there exists σ′ such that

Pσs1(JβKtn) ≤ Pσ
′

s2(JβKε·tn) (3)

for any n ∈ IN and t ∈ IR≥0.

Case n = 1: In this case we have Pσs1(JβKtn) = 1lJβK(s1) and Pσ′s2(JβKε·tn) =
1lJβK(s2). Since s1 �ε s2, we get s1 ∈ JβK if and only if s2 ∈ JβK, and hence

Pσs1(JβKtn) = Pσ′s2(JβKε·tn) for any σ and σ′.
Case n > 1: In this case we have

Pσs1(JβKtn) = 1lJβKc(s1) · Pσs1(JβKc, . . . , JβKc︸ ︷︷ ︸
n−1 times

, JβK)(t)

and
Pσ
′

s2(JβKε·tn) = 1lJβKc(s2) · Pσ
′

s2(JβKc, . . . , JβKc︸ ︷︷ ︸
n−1 times

, JβK)(ε · t).

Since s1 �ε s2, we have 1lJβKc(s1) = 1lJβKc(s2). Equation (3) then follows from
Lemma 17.

Hence we know that

Pσs1(♦tJβK) =
∑
n∈IN

Pσs1(JβtnK) ≤
∑
n∈IN

Pσns2 (JβtnK).

By inspecting the proof of Lemma 17, we see that each σi can be constructed
so that they are compatible, i.e. σi(w) = σj(w) for any i, j ∈ IN. Hence we get a
single scheduler σ′ such that

Pσs1(♦tJβK) ≤
∑
n∈IN

Pσ
′

s2(JβtnK) = Pσ
′

s2(♦tJβK).

ut

