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1 Introduction

Weighted automata constitute a popular and useful framework for specifying and modelling the
behaviour of quantitative systems. In order to reason about such systems, a logical description
language is often used. One such logic is monadic second-order logic (MSO), which is known
to describe exactly the behaviour of unweighted automata by a theorem of Büchi, Elgot, and
Trakhtenbrot [1, 4, 10]. A more recent result by Droste and Gastin [2] showed that a weighted
extension of MSO captures the behaviour of weighted automata in a similar fashion. While this
result has been extended in many different ways, a proper analysis of this logic in the form of
axiomatisation, satisfiability, and model checking issues has not yet surfaced.

One of the difficulties of such an analysis is that the weighted MSO (wMSO) is interpreted
over an arbitrary set of values, rather than a standard Boolean setting. This means that
each formula is a function which takes a model and returns a value, rather than something
which may or may not be satisfied by a given model. We therefore investigate how to extend
familiar concepts such as completeness, validity, and satisfiability to this non-Boolean, real-
valued setting.

We document here some of our on-going work on these issues, including presenting equa-
tional systems that give a complete axiomatisation of a fragment of weighted MSO as well as
algorithms for some of the variants of satisfiability checking in this setting.

2 Syntax and Semantics of wMSO

Following [5], we define the syntax and semantics of wMSO as follows. Consider a finite set of
first-order variables VFO, a finite set of second-order variables VMSO, a finite alphabet Σ, and an
arbitrary set R of weights. Note that we assume no structure on R, it does not even have to be
a semiring. The syntax of wMSO is given by the following grammar, divided into two layers.

ϕ ::= > | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ1 ∧ ϕ2 | ∀xϕ | ∀Xϕ (MSO)

Ψ ::= r | ϕ ? Ψ1 : Ψ2 (wMSO)

Here, a ∈ Σ, r ∈ R, x, y ∈ VFO, and X ∈ VMSO. The first layer, MSO, is simply MSO on
finite words. The second layer, wMSO, allows one to condition on MSO formulas, and choose
different values of R depending on the truth of the MSO formulas.

The MSO formulas are interpreted in the standard way over words w ∈ Σ+ together with a
valuation of this word σ, which assigns to each first-order variable a position in the word and
to each second-order variable a set of such positions. We denote by Σ+

σ the set of pairs (w, σ)
where w ∈ Σ+ and σ is a valuation of w, and we denote by JϕK the set of all pairs (w, σ) ∈ Σ+

σ

that satisfies ϕ.
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Γ ` r ≈ r Γ ` Ψ ≈ ϕ ? Ψ : Ψ Γ ` ¬ϕ ? Ψ1 : Ψ2 ≈ ϕ ? Ψ2 : Ψ1

Γ ∪ {ϕ} ` Ψ1 ≈ Ψ2, if Γ ` Ψ1 ≈ Ψ2 Γ ` ϕ ? Ψ1 : Ψ2 ≈ Ψ1, if Γ ` ϕ↔ >
Γ ` ϕ ? Ψ1 : Ψ2 ≈ Ψ, if Γ ∪ {ϕ} ` Ψ1 ≈ Ψ and Γ ∪ {¬ϕ} ` Ψ2 ≈ Ψ

Table 1: Axioms for wMSO.

The semantics of formulas Ψ of wMSO is given by a function J·K : Σ+
σ → R, defined by

JrK (w, σ) = r Jϕ ? Ψ1 : Ψ2K (w, σ) =

{
JΨ1K (w, σ) if w, σ |= ϕ

JΨ2K (w, σ) otherwise

For a formula Ψ ∈ wMSO, a given value r ∈ R can be represented by an MSO formula that
describes all the strings on which Ψ returns the value r.

Definition 1. For Ψ ∈ wMSO and r ∈ R, we define ϕ(Ψ, r) recursively: ϕ(r, r) = > and
ϕ(r′, r) = ¬>, when r 6= r′; and ϕ(ψ?Ψ1 : Ψ2, r) = (ψ ∧ ϕ(Ψ1, r)) ∨ (¬ψ ∧ ϕ(Ψ2, r)).

Lemma 1. (w, σ) ∈ Jφ(Ψ, r)K iff JΨK (w, σ) = r.

3 Axioms

The main concern of our on-going work is to give a complete axiomatisation of wMSO. Our
axiomatisation relies on an axiomatisation of MSO (or FO) on finite strings. Since satisfiability
is decidable for both these logics, they have recursive and complete axiomatisations. For the
case of MSO, such an axiomatisation has been given in [6], although we are not aware of a
similar axiomatization for FO.

For wMSO, we first have to consider what it means to axiomatize a real-valued, non-Boolean
logic. On the syntactic side, it seems natural to give an axiomatisation in terms of an equational
system, denoted ` Ψ1 ≈ Ψ2, and on the semantic side to equate two formulas that give the
same value on all models, denoted Ψ1 ∼ Ψ2. This also agrees with the work by Mio et al. [7] on
axiomatising Riesz modal logic, which is the only other work on axiomatising real-valued logics
that we know of. We augment this definition slightly by considering a set of MSO formulas Γ
which we think of as assumptions. Then we write Γ ` Ψ1 ≈ Ψ2 if Ψ1 and Ψ2 can be derived
from the axioms under the assumptions Γ and Ψ1 ∼Γ Ψ2 if Ψ1 and Ψ2 give the same values on
all models that satisfy all the formulas of Γ.

We propose an axiomatization that includes the usual axioms for equality and the axioms
in Table 1. The main part of the axiomatisation is concerned with axiomatising the behaviour
of the conditional operator ϕ ? Ψ1 : Ψ2.

Theorem 1 (Completeness of wMSO). Ψ1 ∼Γ Ψ2 if and only if Γ ` Ψ1 ≈ Ψ2.

4 Further Concerns

Satisfiability For a real-valued, non-Boolean logic such as wMSO, familiar notions such as
satisfiability need to be redefined, since we no longer have a satisfaction relation, but each
formula is instead a function. We therefore wish to discuss and investigate how to generalise the
notion of satisfiability to the real-valued setting, and determine the decidability and complexity
of such notions. Plausible candidates for an extension of satisfiability is asking if a formula can
return a specific value, if two formulae can return the same value, or if a formula can return a
value other than a given one.
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Complexity Each of these notions, as well as provability for the equational theory, can be
reduced to MSO satisfiability and are thus decidable. For instance, Ψ1 returns the same value
as Ψ2 iff ∨

r in Ψ1
and Ψ2

ϕ(Ψ1, r) ∧ ϕ(Ψ2, r)

is satisfiable. However, one can not really hope for efficient algorithms, since the satisfiability
problem for MSO on finite strings is already non-elementary [8], and MSO-satisfiability can be
reduced to any of the three variants of wMSO satisfiability discussed above — for instance, ϕ
is satisfiable iff ϕ ? 1 : 0 can take the value 1.

Another interesting theory would be the one of inequalities. Similarly to the above, we can
see that Ψ1 ≤ Ψ2 can be described by the MSO formula∨

r1 in Ψ1
r2 in Ψ2
r1≤r2

ϕ(Ψ1, r1) ∧ ϕ(Ψ2, r2),

and therefore, the same decidability and complexity observations can be made in this setting.

Variations Instead of using MSO formulas for conditions, one can use formulas of another
logic, such as first-order logic (FO), resulting in wFO, which leads to different representation
results [3]. Our complete axiomatization is agnostic with regard to the logic that one uses
for conditions, as long as this logic has a complete axiomatization. One may hope to obtain
better complexity results with respect to the decision problems discussed previously, by making
a different choice with regards to the base logic. However, this seems unlikely in the case of FO,
since, similarly to MSO, FO-satisfiability is non-elementary [8], and model checking for FO is
PSPACE-complete [9, 11].

The full wMSO logic described in [5] includes a third layer called core-wMSO, which allows
one to form multisets of values. This layer includes a sum over formulas indexed by a second-
order variable, which corresponds to a kind of union over multisets. This sum behaves like a
quantifier, so we hope that one can add axioms reminiscent of those for quantifiers of MSO in
order to obtain a complete axiomatisation, although this is on-going work.
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