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Abstract14

This paper studies the existence of finite equational axiomatisations of the interleaving parallel15

composition operator modulo the behavioural equivalences in van Glabbeek’s linear time-branching16

time spectrum. In the setting of the process algebra BCCSP over a finite set of actions, we provide17

finite, ground-complete axiomatisations for various simulation and (decorated) trace semantics. On18

the other hand, we show that no congruence over that language that includes bisimilarity and is19

included in possible futures equivalence has a finite, ground-complete axiomatisation. This negative20

result applies to all the nested trace and nested simulation semantics.21
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1 Introduction29

Process algebras [4, 6] are prototype specification languages allowing for the description and30

analysis of concurrent and distributed systems, or simply processes. Briefly, the operational31

semantics [26] of a process is modelled via a labelled transition system (LTS) [20] in which32

the computational steps are abstracted into state-to-state transitions having actions as labels.33

Notably, in order to model the concurrent interaction between processes, the majority of34

process algebras include some form of parallel composition operator, also known as merge.35

Behavioural equivalences have then been introduced as simple and elegant tools for36

comparing the behaviour of processes. These are equivalence relations defined on the37

states of LTSs allowing one to establish whether two processes have the same observable38

behaviour. Different notions of observability correspond to different levels of abstraction from39

the information carried by the LTS, which can either be considered irrelevant in a given40

application context, or be unavailable to an external observer.41
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40:2 On the axiomatisability of parallel composition

In [16], van Glabbeek presented the linear time-branching time spectrum, namely a42

taxonomy of behavioural equivalences based on their distinguishing power. He carried out43

his study in the setting of the process algebra BCCSP, which consists of the basic operators44

from CCS [21] and CSP [19], and he proposed ground-complete axiomatisations for most of45

the congruences in the spectrum over this language. (An axiomatisation is ground-complete46

if it can prove all the valid equations relating terms that do not contain process variables.)47

The presented ground-complete axiomatisations are finite if so is the set of actions. For ready48

simulation, ready trace and failure trace equivalences, the axiomatisation in [16] made use of49

conditional equations. Blom, Fokkink and Nain gave purely equational, finite axiomatisations50

of those equivalences in [7]. Then, the works in [1], on nested semantics, and in [8], on51

impossible futures semantics, completed the studies of the axiomatisability of behavioural52

congruences over BCCSP by providing negative results: neither impossible futures nor any53

of the nested semantics have a finite, ground-complete axiomatisation over BCCSP.54

Obtaining a complete axiomatisation of a behavioural congruence is a classic, key problem55

in concurrency theory, as it allows for characterising the semantics of a process algebra in a56

purely syntactic fashion. Hence, this characterisation becomes independent of the details of57

the definition of the process semantics of interest.58

All the results mentioned so far were obtained over the algebra BCCSP that does not59

include any operator for the parallel composition of processes. Considering the crucial role60

of such an operator, it is natural to ask which of those results would still hold over a process61

algebra including it.62

In the literature, we can find a wealth of studies on the axiomatisability of parallel63

composition modulo bisimulation semantics [25]. Briefly, in the seminal work [18], Hennessy64

and Milner proposed a ground-complete axiomatisation of (a part of) CCS modulo bisimilarity.65

That axiomatisation, however, included infinitely many axioms, which corresponded to66

instances of the expansion law used to express equationally the semantics of the merge67

operator. Then, Bergstra and Klop showed in [5] that a finite ground-complete axiomatisation68

modulo bisimilarity can be obtained by enriching CCS with two auxiliary operators, i.e., the69

left merge and the communication merge |. Later, Moller proved that the use of auxiliary70

operators is indeed necessary to obtain a finite equational axiomatisation of bisimilarity71

in [22–24].72

To the best of our knowledge, no systematic study of the axiomatisability of the parallel73

composition operator modulo the other semantics in the spectrum has been presented so far.74

Our contribution We consider the process algebra BCCSP‖, namely BCCSP enriched with75

the interleaving parallel composition operator, and we study the existence of finite equational76

axiomatisations of the behavioural congruences in the linear time-branching time spectrum77

over it. Our results delineate the boundary between finite and non-finite axiomatisability of78

the congruences in the spectrum over the language BCCSP‖. (See Figure 1.)79

We start by providing a finite, ground-complete axiomatisations for ready simulation80

semantics. The axiomatisation is obtained by extending the one for BCCSP with a few axioms81

expressing equationally the behaviour of interleaving modulo the considered congruence.82

The added axioms allow us to eliminate all occurrences of the interleaving operator from83

BCCSP‖ processes, thus reducing ground-completeness over BCCSP‖ to ground-completeness84

over BCCSP [7, 16]. Since the axioms for the elimination of parallel composition modulo85

ready simulation equivalence are of course sound with respect to the coarser equivalences,86

the reduction works for all behavioural equivalences below ready simulation equivalence.87

Nevertheless, we shall find more elegant ways to do the reduction for the coarser equivalences88
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in the spectrum. We shall then observe a sort of parallelism between the axiomatisations89

for the notions of simulation and the corresponding decorated trace semantics: the axioms90

used to express equationally the interleaving operator in a decorated trace semantics can91

be seen as the linear counterpart of those used in the corresponding notion of simulation92

semantics. For instance, while the axioms for ready simulation impose constraints on the93

form of both arguments of the interleaving operator to trigger the reductions, those for ready94

trace equivalence impose similar constraints but only on one argument.95

Then, we complete our journey in the spectrum by showing that nested simulation and96

nested trace semantics do not have a finite axiomatisation over BCCSP‖. To this end, firstly97

we adapt Moller’s arguments to the effect that bisimilarity is not finitely based over CCS98

to obtain the negative result for possible futures equivalence, also known as 2-nested trace99

equivalence. Informally, the negative result is obtained by providing an infinite family of100

equations that are all sound modulo possible futures equivalence but that cannot all be101

derived from any finite sound axiom system. Then, we exploit the soundness of the equations102

in the family modulo bisimilarity to extend the negative result to all the congruences that103

are finer than possible futures and coarser than bisimilarity, thus including all nested trace104

and nested simulation semantics.105

Organisation of contents After reviewing some basic notions on behavioural equivalences106

and equational logic in Section 2, we start our journey in the spectrum by providing a finite,107

ground-complete axiomatisation for ready simulation equivalence over BCCSP‖ in Section 3.108

In Section 4 we discuss how it is possible to refine the axioms for ready simulation to obtain109

finite, ground-complete axiomatisations for completed simulation and simulation equivalences.110

Then, in Section 5 similar refinements are provided for the (decorate) trace equivalences,111

thus completing the presentation of our positive results. We end our journey in Section 6112

with the presentation of the negative results, namely that the nested simulation and nested113

trace equivalences do not have a finite axiomatiosation over BCCSP‖. Finally, in Section 7114

we draw some conclusions and discuss avenues for future work.115

2 Background116

The language BCCSP‖. The language BCCSP‖ extends BCCSP with parallel composition.117

Formally, BCCSP‖ consists of basic operators from CCS [21] and CSP [19], with the purely118

interleaving parallel composition operator ‖, and is given by the following grammar:119

t ::= 0 | x | a.t | t+ t | t ‖ t120

where a ranges over a set of actions A and x ranges over a countably infinite set of variables121

V. In what follows, we assume that the set of actions A is finite.122

We shall use the meta-variables t, u, . . . to range over BCCSP‖ terms, and write var(t)123

for the collection of variables occurring in the term t. We also adopt the standard convention124

that prefixing binds strongest and + binds weakest. Moreover, trailing 0’s will often be125

omitted from terms. We use a summation
∑
i∈{1,...,k} ti to denote the term t = t1 + · · ·+ tk,126

where the empty sum represents 0. We can also assume that the terms ti, for i ∈ {1, . . . , k},127

do not have + as head operator, and refer to them as the summands of t. The size of a term128

t, denoted by size(t), is the number of operator symbols in it.129

A BCCSP‖ term is closed if it does not contain any variables. We shall, sometimes, refer130

to closed terms simply as processes. We let P denote the set of BCCSP‖ processes and let131

p, q, . . . range over it. We use the Structural Operational Semantics (SOS) framework [26]132
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40:4 On the axiomatisability of parallel composition

a.x
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

x
a−→ x′

x ‖ y a−→ x′ ‖ y
y

a−→ y′

x ‖ y a−→ x ‖ y′

Table 1 Operational semantics of BCCSP‖.

to equip processes with an operational semantics. A literal is an expression of the form133

t
a−→ t′ for some process terms t, t′ and action a ∈ A. It is closed if both t, t′ are closed134

terms. The inference rules for prefixing a._, nondeterministic choice + and interleaving135

parallel composition ‖ are reported in Table 1. A substitution σ is a mapping from variables136

to terms. It extends to terms, literals and rules in the usual way and it is closed if it maps137

every variable to a process.138

The inference rules in Table 1 induce the A-labelled transition system [20] (P,A,−→)139

whose transition relation −→ ⊆ P ×A× P contains exactly the closed literals that can be140

derived using the rules in Table 1. As usual, we write p a−→ p′ in lieu of (p, a, p′) ∈ −→. For141

each p ∈ P and a ∈ A, we write p a−→ if p a−→ p′ holds for some p′, and p a−→6 otherwise. The142

initials of p are the actions that label the outgoing transitions of p, that is, I(p) = {a | p a−→}.143

For a sequence of actions α = a1 · · · ak (k ≥ 0), and processes p, p′, we write p α−→ p′ if and144

only if there exists a sequence of transitions p = p0
a1−−→ p1

a2−−→ · · · ak−−→ pk = p′. If p α−→ p′145

holds for some process p′, then α is a trace of p, and p′ is a derivative of p. Moreover, we146

say that α is a completed trace of p if I(p′) = ∅. We let T(p) denote the set of traces of147

p, and we let CT(p) ⊆ T(p) denote the set of completed traces of p. We let ε denote the148

empty trace, and |α| denote the length of trace α. It is well known, and easy to show,149

that T(p) is finite for each BCCSP‖ process p. It follows that we can define the depth of a150

process p, denoted by depth(p), as the length of a longest completed trace of p. Formally,151

depth(p) = max{|α| | α ∈ CT(p)}. Similarly, the norm of a process p, denoted by norm(p), is152

the length of a shortest completed trace of p, i.e. norm(p) = min{|α| | α ∈ CT(p)}.153

Behavioural equivalences. Behavioural equivalences have been introduced to establish154

whether the behaviours of two processes are indistinguishable for their observers. Roughly,155

they allow us to check whether the observable semantics of two processes is the same. In the156

literature we can find several notions of behavioural equivalence based on the observations157

that an external observer can make on the process. In his seminal article [16], van Glabbeek158

gave a taxonomy of the behavioural equivalences discussed in the literature on concurrency159

theory, which is now called the linear time-branching time spectrum (see Figure 1).160

One of the main concerns in the development of a meta-theory of process languages is to161

guarantee their compositionality, i.e., that the replacement of a component of a system with162

an R -equivalent one, for a chosen behavioural equivalence R , does not affect the behaviour163

of that system. In algebraic terms, this is known as the congruence property of R with164

respect to all language operators, which consists in verifying whether165

f(t1, . . . , tn)R f(t′1, . . . , t′n) for any n-ary operator f whenever tiR t′i for all i = 1, . . . , n .166

Since BCCSP‖ operators are defined by inference rules in the de Simone format [12],167

by [14, Theorem 4] we have that all the equivalences in the spectrum in Figure 1 are168

congruences with respect to them. Our aim in this paper is to investigate the existence of a169

finite equational axiomatisation of BCCSP‖ modulo all those congruences.170
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bisimulation (∼B)

2-nested simulation (∼2S)

failure simulation (∼FS) = ready simulation (∼RS)

ready trace (∼RT)

failure trace (∼FT) readies (∼R)

failures (∼F)

completed trace (∼CT)

trace (∼T)

completed simulation (∼CS)

simulation (∼S)

possible futures (∼PF)

Figure 1 The linear time-branching time spectrum [16]. For the equivalence relations in blue we
provide a finite, ground-complete axiomatization. For the ones in red, we provide a negative result.
The case of bisimulation is known from the literature.

(e1) t ≈ t (e2) t ≈ u
u ≈ t (e3) t ≈ u u ≈ v

t ≈ v (e4) t ≈ u
σ(t) ≈ σ(u)

(e5) t ≈ u
a.t ≈ a.u (e6) t ≈ u t′ ≈ u′

t+ t′ ≈ u+ u′
(e8) t ≈ u t′ ≈ u′

t ‖ t′ ≈ u ‖ u′
.

Table 2 The rules of equational logic

Equational Logic. An axiom system E is a collection of equations t ≈ u over BCCSP‖.171

An equation t ≈ u is derivable from an axiom system E , notation E ` t ≈ u, if there is an172

equational proof for it from E , namely if t ≈ u can be inferred from the axioms in E using173

the rules of equational logic, which express reflexivity, symmetry, transitivity, substitution174

and closure under BCCSP‖ contexts and are reported in Table 2.175

We are interested in equations that are valid modulo some congruence relation R over176

closed terms. The equation t ≈ u is said to be sound modulo R if σ(t) R σ(u) for all177

closed substitutions σ. For simplicity, if t ≈ u is sound modulo R , then we write t R u. An178

axiom system is sound modulo R if, and only if, all of its equations are sound modulo R .179

Conversely, we say that E is ground-complete modulo R if p R q implies E ` p ≈ q for all180

closed terms p, q. We say that R has a finite ground-complete axiomatisation, if there is a181

finite axiom system E that is sound and ground-complete for R .182

In Table 3 we present some basic axioms for BCCSP‖ that are sound with respect to183

all the behavioural equivalences in Figure 1. Henceforth, we will let E0 = {A0,A1,A2,A3},184

and we will denote by E1 the axiom system consisting of all the axioms in Table 3, namely185

E1 = E0 ∪ {P0,P1}.186

To be able to eliminate the interleaving parallel composition operator from closed terms187

we will make use of two refinements EL1 and EL2 of EL3, which is the classic expansion188

law [18] (see Table 4). We remark that the actions occurring in the three axioms in Table 4189

are not action variables. Hence, when we write that an axiom system E includes one of these190

axioms, we mean that it includes all possible instances of that axiom with respect to the191
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40:6 On the axiomatisability of parallel composition

(A0) x + 0 ≈ x (P0) x ‖ 0 ≈ x

(A1) x + y ≈ y + x (P1) x ‖ y ≈ y ‖ x

(A2) (x + y) + z ≈ x + (y + z)
(A3) x + x ≈ x

Table 3 Basic axioms for BCCSP‖. We define E0 = {A0, A1, A2, A3} and E1 = E0 ∪ {P0, P1}.

(EL1) ax ‖ by ≈ a(x ‖ by) + b(ax ‖ y)

(EL2)
∑

i∈I
aixi ‖

∑
j∈J

bjyj ≈
∑

i∈I
ai(xi ‖

∑
j∈J

bjyj) +
∑

j∈J
bj(
∑

i∈I
aixi ‖ yj)

with ai 6= ak whenever i 6= k and bj 6= bh whenever j 6= h, ∀ i, k ∈ I, ∀ j, h ∈ J

(EL3)
∑

i∈I
aixi ‖

∑
j∈J

bjyj ≈
∑

i∈I
ai(xi ‖

∑
j∈J

bjyj) +
∑

j∈J
bj(
∑

i∈I
aixi ‖ yj)

Table 4 The different instantiations of the expansion law.

actions in A. In particular, EL3 is a schema that generates infinitely many axioms, regardless192

of the cardinality of the set of actions. This is due to the fact that we can have arbitrary193

summations in the two arguments of the parallel composition in the left hand side of EL3.194

Conversely, when the set of actions is assumed to be finite, we are guaranteed that there195

are only finitely many instances of EL1 and EL2. Indeed, EL1 is a particular instance of196

EL2, i.e., the one in which both summations are over singletons. The reason for considering197

both is that, as we will see, EL1 is enough to obtain the elimination result when combined198

with axioms allowing us to reduce any process of the form (
∑
i∈I aipi) ‖ (

∑
j∈J bjqj) to199 ∑

i∈I,j∈J(aipi ‖ bjqj). Conversely, EL2 is needed when this reduction is not sound modulo200

the considered semantics.201

3 The first stage: ready simulation202

In this section we study the equational theory of ready simulation, whose formal definition is203

recalled below together with those of completed simulation and simulation equivalence.204

I Definition 1 (Simulation equivalences). A simulation is a binary relation R ⊆ P × P205

such that, whenever pR q and p a−→ p′, then there is some q′ such that q a−→ q′ and p′R q′.206

We write p vS q if there is a simulation R such that pR q. We say that p is simulation207

equivalent to q, notation p ∼S q, if p vS q and q vS p.208

A completed simulation is a simulation R such that, whenever pR q and I(p) = ∅, then209

I(q) = ∅. We write p vCS q if there is a completed simulation R such that pR q. We say210

that p is completed simulation equivalent to q, notation p ∼CS q, if p vCS q and q vCS p.211

A ready simulation is a simulation R such that, whenever pR q then I(p) = I(q). We212

write p vRS q if there is a ready simulation R such that pR q. We say that p is ready213

simulation equivalent to q, notation p ∼RS q, if p vRS q and q vRS p.214

In [15] the notion of failure simulation was also introduced as a simulation R such that,215

whenever pR q and I(p) ∩X = ∅, for some X ⊆ A, then I(q) ∩X = ∅. Then, in [14] it was216

proved that the notion of failure simulation coincides with that of ready simulation.217

Our aim is to provide a finite, ground-complete axiomatisation of BCCSP‖ modulo ready218

simulation equivalence. To this end, we recall that in [16] it was proved that the axiom system219

consisting of E0 together with axiom RS in Table 5 is a ground-complete axiomatisation of220
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(RS) a(bx + by + z) ≈ a(bx + by + z) + a(bx + z)

(RSP1) (ax + ay + u) ‖ (bz + bw + v) ≈ (ax + u) ‖ (bz + bw + v) + (ay + u) ‖ (bz + bw + v)+
+(ax + ay + u) ‖ (bz + v) + (ax + ay + u) ‖ (bw + v)

(RSP2)
(∑

i∈I
aixi

)
‖ (by + bz + w) ≈

∑
i∈I

ai (xi ‖ (by + bz + w)) +
+
(∑

i∈I
aixi

)
‖ (by + w) +

(∑
i∈I

aixi

)
‖ (bz + w)

where aj 6= ak whenever j 6= k for j, k ∈ I

ERS = E1 ∪ {RS,RSP1,RSP2,EL2}

(CS) a(bx + y + z) ≈ a(bx + y + z) + a(bx + z)

(CSP1) (ax + by + u) ‖ (cz + dw + v) ≈ (ax + u) ‖ (cz + dw + v) + (by + u) ‖ (cz + dw + v)+
+(ax + by + u) ‖ (cz + v) + (ax + by + u) ‖ (dw + v)

(CSP2) ax ‖ (by + cz + w) ≈ a(x ‖ (by + cz + w)) + ax ‖ (by + w) + ax ‖ (cz + w)

ECS = E1 ∪ {CS,CSP1,CSP2,EL1}

(S) a(x + y) ≈ a(x + y) + ax

(SP1) (x + y) ‖ (z + w) ≈ x ‖ (z + w) + y ‖ (z + w) + (x + y) ‖ z + (x + y) ‖ w

(SP2) ax ‖ (y + z) ≈ a(x ‖ (y + z)) + ax ‖ y + ax ‖ z

ES = E1 ∪ {S,SP1,SP2,EL1}

Table 5 Additional axioms for (ready, completed) simulation equivalence.

BCCSP, namely BCCSP‖ without any occurrence of ‖, modulo ready simulation equivalence.221

Hence, to obtain a finite, ground-complete axiomatisation of BCCSP‖ modulo ∼RS it suffices222

to enrich the axiom system E1 ∪{RS} with finitely many axioms allowing one to eliminate all223

occurrences of ‖ from closed BCCSP‖ terms. In fact, by letting ERS denote the axiom system224

E1 ∪ {RS} enriched with the necessary axioms, the elimination result consists in proving225

that for every closed BCCSP‖ term p there is a closed BCCSP term q (i.e., without any226

occurrence of ‖ in it) such that ERS ` p ≈ q. Therefore, the completeness of the proposed227

axiom system over BCCSP‖ is a direct consequence of that over BCCSP proved in [16].228

Clearly, EL3 would allow us to obtain the desired elimination, but, as previously outlined,229

it is a schema that finitely presents as infinite collection of equations, and thus an axiom230

system including it is not finite. In order to obtain the elimination result using only finitely231

many axioms we will characterise the distributivity properties of ‖ over + modulo ready232

simulation equivalence. This is done by axioms RSP1 and RSP2 in Table 5.233

First of all, we notice that the axiom system ERS = E1 ∪ {RS,RSP1,RSP2,EL2} is sound234

modulo ready simulation equivalence.235

I Theorem 2 (ERS soundness). The axiom system ERS is sound for BCCSP‖ modulo ready236

simulation equivalence, namely whenever ERS ` p ≈ q then p ∼RS q.237

Let us focus now on ground-completeness. Intuitively, RSP1 and RSP2 have been238

constructed in such a way that the set of initial actions of the two arguments of ‖ is preserved,239

while the initial term is reduced to a sum of terms of smaller size. Briefly, according to240

the main features of ready simulation semantics, axiom RSP1 allows us to distribute ‖241

over + when both arguments of ‖ have nondeterministic choices among summands having242

the same initial action. Conversely, axiom RSP2 deals with the case in which only one243

argument of ‖ has summands with the same initial action. In order to preserve the branching244

structure of the process, which is fundamental to guarantee the soundness of the axioms245
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40:8 On the axiomatisability of parallel composition

modulo ∼RS, both RSP1 and RSP2 take into account the behaviour of both arguments246

of ‖: the terms in the right-hand side of both axioms are such that whenever the initial247

nondeterministic choice of one argument of ‖ is resolved, the entire behaviour of the other248

argument is preserved. In fact, we stress that a simplified version of, e.g., RSP1 in which249

only one argument of ‖ distributes over + would not be sound modulo ∼RS. Consider, for250

instance, the process p = (ap1 + ap2 + b) ‖ c, with p1 6∼RS p2. It is immediate to verify that251

p 6∼RS (ap1 + b) ‖ c+ (ap2 + b) ‖ c.252

The idea is that by (repeatedly) applying axioms RSP1 and RSP2, from left to right,253

we are able to reduce a process of the form (
∑
i∈I pi) ‖ (

∑
j∈J pj) to a process of the form254 ∑

k∈K pk such that whenever pk has ‖ as head operator then pk =
∑
h∈H ahph ‖

∑
l∈L blpl,255

with ah 6= ah′ for h 6= h′, and bl 6= bl′ for l 6= l′, for some closed BCCSP‖ terms ph, pl. The256

elimination of ‖ from these terms can then proceed by means of the finitary refinement EL2 of257

the expansion law presented in Table 4. In particular, we notice that RSP2 is needed because258

RSP1 alone does not allow us to reduce all processes of the form (
∑
i∈I pi) ‖ (

∑
j∈J pj) into259

a sum of processes to which EL2 can be applied. This is mainly due to the fact that, in260

order to be sound modulo ∼RS, RSP1 imposes constraints on the form of both arguments of261

a process (
∑
i∈I pi) ‖ (

∑
j∈J pj).262

We can then proceed to prove the elimination result.263

I Proposition 3 (ERS elimination). For every closed BCCSP‖ term p there exists a BCCSP264

term q such that ERS ` p ≈ q.265

The ground-completeness of ERS then follows from the ground-completeness of E0 ∪ {RS}266

over BCCSP [16].267

I Theorem 4 (ERS completeness). The axiom system ERS is a ground-complete axiomatisation268

of BCCSP‖ modulo ready simulation equivalence, i.e., whenever p ∼RS q then ERS ` p ≈ q.269

We remark that since axioms RSP1, RSP2, and EL2 are sound modulo ready simulation270

equivalence, they are automatically sound modulo all the equivalences in the spectrum271

that are coarser than ∼RS, namely the completed simulation, simulation, and (decorated)272

trace equivalences. Hence, we can easily obtain finite, ground-complete axiomatisations of273

BCCSP‖ modulo each of those equivalences by adding RSP1, RSP2 and EL2 to the respective274

ground-complete axiomatisations of BCCSP that have been proposed in the literature [7, 16].275

However, for each of those equivalences we can provide stronger axioms that give a more276

elegant characterisation of the distributivity properties of ‖ over +. In particular, the277

axiom schemata RSP2 and EL2 both generate 2|A| equational axioms. By exploiting the278

various forms of distributivity of parallel composition over choice, we can obtain more concise279

ground-complete axiomatisations of BCCSP‖ modulo the coarser equivalences. We dedicate280

the next two sections to the presentation of these results.281

4 Completed simulation and simulation282

In this section we refine the axiom system ERS to obtain finite, ground-complete axiomatisa-283

tions of BCCSP‖ modulo completed simulation and simulation equivalences. To this end, we284

replace RSP1 and RSP2 with new axioms, tailored for the considered semantics, that allow285

us to obtain the elimination of ‖ from closed BCCSP‖ terms, while imposing less restrictive286

constraints on the distributivity of ‖ over +.287

Let us focus first on completed simulation equivalence. We can use axioms CSP1 and288

CSP2 in Table 5 to characterise the distributivity of ‖ over + modulo ∼CS. Intuitively, CSP1289
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is the completed simulation counterpart of RSP1, and CSP2 is that of RSP2. Notice that both290

CSP1 and CSP2 are such that when distributing ‖ over + we never get 0 as an argument of ‖,291

thus guaranteeing the soundness of the reduction modulo ∼CS. Moreover, we stress that CSP1292

and CSP2 are not sound modulo ready simulation equivalence. This is due to the fact that293

both axioms allow for distributing ‖ over + regardless of the initial actions of the summands.294

It is then immediate to check that, for instance, a ‖ (b + c) 6∼RS a ‖ b + a ‖ c + a ‖ (b + c),295

whereas a ‖ (b+ c) ∼CS a ‖ b+ a ‖ c+ a ‖ (b+ c). Interestingly, due to the relaxed constraints296

on distributivity, by (repeatedly) applying CSP1 and CSP2, from left to right, we are able297

to reduce a BCCSP‖ process of the form (
∑
i∈I pi) ‖ (

∑
j∈J pj) to a BCCSP‖ process of298

the form
∑
k∈K pk such that whenever pk has ‖ as head operator then pk = akqk ‖ bkq′k for299

some qk, q′k. We can then use the refinement EL1 of the expansion law to proceed with the300

elimination of ‖ from these terms.301

Consider the axiom system ECS = E1 ∪ {CS,CSP1,CSP2,EL1}. We can formalise the302

elimination result for ∼CS in the following proposition.303

I Proposition 5 (ECS elimination). For every closed BCCSP‖ term p there exists a BCCSP304

term q such that ECS ` p ≈ q.305

A similar reasoning could be applied to obtain the elimination result for simulation306

equivalence. Although this result could be directly derived by the soundness of CSP1 and307

CSP2 modulo simulation equivalence, we can provide stronger axioms for the distributivity308

of ‖ over summation modulo ∼S. Hence, we replace CSP1 and CSP2 by axioms SP1 and SP2309

in Table 5 and we combine them with EL1 to eliminate all occurrences of ‖ from the closed310

BCCSP‖ terms. However, it is also possible to obtain the elimination result for simulation311

equivalence as a corollary of that for completed simulation. Consider the axiom system312

ES = E1 ∪ {S,SP1,SP2,EL1}. We can show that the axioms in ECS are all provable from the313

axiom system ES.314

I Lemma 6. The axioms of the system ECS are derivable from the axiom system ES, namely:315

1. ES ` CS,316

2. ES ` CSP1, and317

3. ES ` CSP2.318

I Proposition 7 (ES elimination). For every closed BCCSP‖ term p there exists a closed319

BCCSP term q such that ES ` p ≈ q.320

I Remark 8. A natural question that may arise is whether a similar derivation is possible for321

ERS from ECS. We conjecture that the answer is negative. In particular, axiom RSP2 cannot322

be derived from the axioms in ECS.323

In light of the results above, and those in [16] showing that E0 ∪ {CS} and E0 ∪ {S} are324

sound and ground-complete axiomatisations of BCCSP modulo ∼CS and ∼S, respectively, we325

can infer that ECS and ES are ground-complete axiomatisations of BCCSP‖ modulo completed326

simulation equivalence and simulation equivalence, respectively.327

I Theorem 9 (Soundness and completeness of ECS and ES). Let X ∈ {CS, S}. The axiom328

system EX is a sound, ground-complete axiomatisation of BCCSP‖ modulo ∼X, i.e., p ∼X q if329

and only if EX ` p ≈ q.330

5 Linear semantics: from ready traces to traces331

We continue our journey in the spectrum by moving to the linear-time semantics. In this332

section we consider trace semantics and all of its decorated versions, and we provide a finite,333
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(RT) a
(∑|A|

i=1(bixi + biyi) + z
)
≈ a

(∑|A|
i=1 bixi + z

)
+ a
(∑|A|

i=1 biyi + z
)

(FP) (ax + ay + w) ‖ z ≈ (ax + w) ‖ z + (ay + w) ‖ z

ERT = E1 ∪ {RT,FP,EL2}

(FT) ax + ay ≈ ax + ay + a(x + y)

EFT = E1 ∪ {FT,RS,FP,EL2}

(R) a(bx + z) + a(by + w) ≈ a(bx + by + z) + a(by + w)

ER = E1 ∪ {R,FP,EL2}

(F) ax + a(y + z) ≈ ax + a(x + y) + a(y + z)

EF = E1 ∪ {F,R,FP,EL2}

(CT) a(bx + z) + a(cy + w) ≈ a(bx + cy + z + w)

(CTP) (ax + by + w) ‖ z ≈ (ax + w) ‖ z + (by + w) ‖ z

ECT = E1 ∪ {CT,CTP,EL1}

(T) ax + ay ≈ a(x + y)

(TP) (x + y) ‖ z ≈ x ‖ z + y ‖ z

ET = E1 ∪ {T,TP,EL1}

Table 6 Additional axioms for trace and decorated trace equivalences.

ground-complete axiomatisation for each of them (see Table 6).334

From a technical point of view, we can split the results of this section into two parts:335

1. those for ready trace, failure trace, ready, and failures equivalence, and336

2. those for completed trace, and trace equivalence.337

In both parts we prove the elimination result only for the finest semantics, namely ready338

trace (Proposition 11) and completed trace (Proposition 17) respectively. We then obtain339

the remaining elimination results by showing that all the axioms in EX are provable from EY,340

where X is finer than Y in the considered part.341

5.1 From ready traces to failures342

First we deal with the decorated trace semantics based on the comparison of the failure and343

ready sets of processes.344

I Definition 10 (Readiness and failures equivalences). A failure pair of a process p is a345

pair (α,X), with α ∈ A∗ and X ⊆ A, such that p α−→ q for some process q with346

I(q) ∩X = ∅. We denote by F(p) the set of failure pairs of p. Two processes p and q are347

failures equivalent, denoted p ∼F q, if F(p) = F(q).348

A ready pair of a process p is a pair (α,X), with α ∈ A∗ and X ⊆ A, such that p α−→ q349

for some process q with I(q) = X. We let R(p) denote the set of ready pairs of p. Two350

processes p and q are ready equivalent, written p ∼R q, if R(p) = R(q).351

A failure trace of a process p is a sequence X0a1X1 . . . anXn, with Xi ⊆ A and ai ∈ A,352

such that there are p1, . . . , pn ∈ P with p = p0
a1−→ p1

a2−→ . . .
an−−→ pn and I(pi) ∩Xi = ∅353
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for all 0 ≤ i ≤ n. We write FT(p) for the set of failure traces of p. Two processes p and q354

are failure trace equivalent, denoted p ∼FT q, if FT(p) = FT(q).355

A ready trace of a process p is a sequence X0a1X1 . . . anXn, for Xi ⊆ A and ai ∈ A,356

such that there are p1, . . . pn ∈ P with p = p0
a1−→ p1

a2−→ . . .
an−−→ pn and I(pi) = Xi for357

all 0 ≤ i ≤ n. We write RT(p) for the set of ready traces of p. Two processes p and q are358

ready trace equivalent, denoted p ∼RT q, if RT(p) = RT(q).359

We consider first the finest equivalence among those in Definition 10, namely ready360

trace equivalence. This can be considered as the linear counterpart of ready simulation: we361

focus on the current execution of the process and we require that each step is mimicked by362

reaching processes having the same sets of initial actions. Interestingly, we can find a similar363

correlation between the axioms characterising the distributivity of ‖ over + modulo the two364

semantics. Consider axiom FP in Table 6. We can see this axiom as the linear counterpart365

of RSP1: since in the linear semantics we are interested only in the current execution of a366

process, we can characterise the distributivity of ‖ over + by treating the two arguments367

of ‖ independently from one another. To obtain the elimination result for ∼RT we do not368

need to introduce the linear counterpart of axiom RSP2. In fact, FP imposes constraints on369

the form of only one argument of ‖. Hence, it is possible to use it to reduce any process of370

the form (
∑
i∈I pi) ‖ (

∑
j∈J pj) into a sum of processes to which EL2 can be applied. We371

can in fact prove that the axioms in the system ERT = E1 ∪ {RT,FP,EL2} are sufficient to372

eliminate all occurrences of ‖ from closed BCCSP‖ terms.373

I Proposition 11 (ERT elimination). For every closed BCCSP‖ term p there is a closed374

BCCSP term q such that ERT ` p ≈ q.375

I Remark 12. Similarly to the case of completed simulation (cf. Remark 8), the reason why376

we propose to prove directly the elimination result for ready trace equivalence is that we did377

not manage to derive the axioms in ERS from those in ERT. Once again, the main issue is that378

axiom RSP2 cannot be derived from those in ERT, even though all its closed instantiations379

can. We leave a formal analysis of this issue as future work.380

Interestingly, axiom FP also characterises the distributivity of ‖ over + modulo ∼FT,∼R381

and ∼F, in the sense that the constraints that it imposes on the form of the arguments of ‖382

to trigger the reduction cannot be relaxed when considering the above-mentioned coarser383

semantics. Consider the axiom systems EFT = E1 ∪ {FT,RS,FP,EL2}, ER = E1 ∪ {R,FP,EL2}384

and EF = E1 ∪ {F,R,FP,EL2}. The following derivability relations among them and ERT are385

then easy to check.386

I Lemma 13. 1. The axioms in the system ERT are derivable from EFT, namely EFT ` RT.387

2. The axioms in the system ERT are derivable from ER, namely ER ` RT.388

3. The axioms in the system EFT are derivable from EF, namely,389

a. EF ` FT, and390

b. EF ` RS.391

Moreover, also the axioms in the system ER are derivable from EF.392

The next proposition is then a corollary of Proposition 11 and Lemma 13.393

I Proposition 14 (EFT, ER, EF elimination). Let X ∈ {FT, R, F}. For every BCCSP‖ term p394

there is a closed BCCSP term q such that EX ` p ≈ q.395

In [7] it was proved that, under the assumption that A is finite, the axiom system396

E0 ∪ {RT} is a ground-complete axiomatisation of BCCSP modulo ∼RT. Moreover, it was397
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also proved that E0 ∪ {FT,RS} is a ground-complete axiomatisation of BCCSP modulo ∼FT.398

The ground-completeness of E0 ∪ {R}, modulo ∼R, and that of E0 ∪ {F,R}, modulo ∼F, over399

BCCSP were proved in [16]. Consequently, the soundness and ground-completeness of the400

proposed axioms systems can then be derived from the elimination results above and the401

completeness results given in [7, 16].402

I Theorem 15 (Soundness and completeness of ERT, EFT, ER and EF). Let X ∈ {RT, FT, R, F}.403

The axiom system EX is a sound, ground-complete axiomatisation of BCCSP‖ modulo ∼X,404

i.e., p ∼X q if and only if EX ` p ≈ q.405

5.2 Completed traces and traces406

It remains to consider completed trace equivalence and trace equivalence.407

I Definition 16 (Trace and completed trace equivalences). Two processes p and q are trace408

equivalent, denoted p ∼T q, if T(p) = T(q). If, in addition, it holds that CT(p) = CT(q), then409

p and q are completed trace equivalent, denoted p ∼CT q.410

Consider the axiom systems ECT = E1 ∪ {CT,CTP,EL1} and ET = E1 ∪ {T,TP,EL1},411

presented in Table 6. In the same way that axiom FP is the linear counterpart of RSP1 and412

RSP2, we have that CTP is the linear counterpart of CSP1 and CSP2, and TP is that of SP1413

and SP2. It is then easy to check that we can use the axioms in ECT to obtain the elimination414

result for ∼CT.415

I Proposition 17 (ECT elimination). For every closed BCCSP‖ term p there is a closed416

BCCSP term q such that ECT ` p ≈ q.417

Moreover, the elimination for ∼T follows from the fact that the axioms in ECT are derivable418

from those in ET.419

I Lemma 18. The axioms in the system ECT are derivable from ET, namely,420

1. ET ` CT, and421

2. ET ` CTP.422

I Proposition 19 (ET elimination). For every closed BCCSP‖ term p there exists a closed423

BCCSP term q such that ET ` p ≈ q.424

I Remark 20. The precise relationship between ECT on the one hand, and ERT and ECS on the425

other hand still needs to be investigated further. We conjecture that the axioms of ERT are426

derivable from ECT and that those of ECS are not.427

In light of Proposition 17, the ground-completeness of ECT over BCCSP‖ modulo ∼CT fol-428

lows from that of E0∪{CT} over BCCSP provided in [16]. Similarly, the ground-completeness429

of E0 ∪ {T} over BCCSP proved in [16] and Proposition 19 give us the ground-completeness430

of ET over BCCSP‖.431

I Theorem 21 (Soundness and completeness of ECT and ET). Let X ∈ {CT, T}. The axiom432

system EX is a ground-complete axiomatisation of BCCSP‖ modulo ∼X, i.e., p ∼X q if and433

only if EX ` p ≈ q.434
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6 The negative results435

We dedicate this section to the negative results: we prove that all the congruences between436

possible futures equivalence (∼PF) and bisimilarity (∼B) do not admit a finite, ground-437

complete axiomatisation over BCCSP‖. This includes all the nested trace and nested438

simulation equivalences. In [1] it was shown that, even if the set of actions is a singleton, the439

nested semantics admit no finite axiomatisation over BCCSP. Indeed, the presence of the440

additional operator ‖ might, at least in principle, allow us to finitely axiomatise the equations441

over closed BCCSP terms that are valid modulo the considered equivalences. Hence, we442

prove these results directly.443

In detail, firstly we focus on the negative result for possible futures semantics, correspond-444

ing to the 2-nested trace semantics [18]. To obtain it, we apply the general technique used445

by Moller to prove that interleaving is not finitely axiomatisable modulo bisimilarity [22–24].446

Briefly, the main idea is to identify a witness property. This is a specific property of BCCSP‖447

terms, say WN for N ≥ 0, that, when N is large enough, is an invariant that is preserved by448

provability from finite, sound axiom systems. Roughly, this means that if E is a finite set449

of axioms that are sound modulo possible futures equivalence, the equation p ≈ q can be450

derived from E , and N is larger than the size of all the terms in the equations in E , then451

either both p and q satisfy WN , or none of them does. Then, we exhibit an infinite family of452

valid equations, called the witness family of equations, in which WN is not preserved, namely453

it is satisfied only by one side of each equation.454

Afterwards, we exploit the soundness modulo bisimilarity of the equations in the witness455

family to lift the negative result for ∼PF to all congruences between ∼B and ∼PF.456

Differently from the aforementioned negative results over BCCSP, ours are obtained457

assuming that the set of actions contains at least two distinct elements. In fact, when the458

action set is a singleton, and only in that case, the axiom459

ax ‖ (ay + az) ≈ ax ‖ (ay + a(y + z)) + ax ‖ (az + a(y + z))460

is sound modulo ∼PF. Due to this axiom we were not able to prove the negative result for461

∼PF in the case that |A| = 1, which we leave as an open problem for future work.462

6.1 Possible futures equivalence463

According to possible futures equivalence [27] two processes are deemed equivalent if, by464

performing the same traces, they reach processes that are trace equivalent. For this reason,465

possible futures equivalence is also known as the 2-nested trace equivalence [18].466

I Definition 22 (Possible futures equivalence). A possible future of a process p is a pair467

(α,X) where α ∈ A∗ and X ⊆ A∗ such that p α−→ p′ for some p′ with X = T(p′). We write468

PF(p) for the set of possible futures of p. Two processes p and q are said to be possible futures469

equivalent, denoted p ∼PF q, if PF(p) = PF(q).470

Our order of business is to prove the following result.471

I Theorem 23. Assume that |A| ≥ 2. Possible futures equivalence has no finite, ground-472

complete, equational axiomatisation over the language BCCSP‖.473

In what follows, for actions a, b ∈ A and i ≥ 0, we let b0a denote a.0 and bi+1a stand for474

b(bia). Consider now the infinite family of equations {eN | N ≥ 1} given, for a 6= b, by:475

pN =
N∑
i=1

bia (N ≥ 1)476
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eN : a ‖ pN ≈ apN +
N∑
i=1

b(a ‖ bi−1a) (N ≥ 1) .477

478

Notice that the equations eN are sound modulo ∼PF for all N ≥ 1.479

We also notice that none of the summands in the right-hand side of equation eN is, alone,480

possible futures equivalent to a ‖ pN . However, we now proceed to show that, when N is481

large enough, having a summand possible futures equivalent to a ‖ pN is an invariant under482

provability from finite sound axiom systems, and it will thus play the role of witness property483

for our negative result.484

To this end, we introduce first some basic notions and results on ∼PF.485

I Definition 24. We say that a BCCSP‖ term t has a 0 factor if it contains a subterm of486

the form t1 ‖ t2, where either t1 or t2 is possible futures equivalent to 0.487

Next, we characterise closed BCCSP‖ terms that are possible futures equivalent to pN .488

I Lemma 25. Let q be a BCCSP‖ term that does not have 0 summands or factors and489

such that CT(q) = CT(pN ) for some N ≥ 1. Then q does not contain any occurrence of ‖.490

Moreover q ∼PF pN if and only if q =
∑
j∈J qj for some terms qj such that none of them has491

+ as head operator and:492

for each i ∈ {1, . . . , N} there is some j ∈ J such that bia ∼PF qj;493

for each j ∈ J there is some i ∈ {1, . . . , N} such that qj ∼PF b
ia.494

495

In light of Lemma 25, we can also provide a decomposition-like characterisation of closed496

BCCSP‖ terms that are possible futures equivalent to a ‖ pN .497

I Proposition 26. Assume that p, q are two BCCSP‖ processes such that p, q 6∼PF 0, p, q do498

not have 0 summands or factors, and p ‖ q ∼PF a ‖ pN , for some N > 1. Then either p ∼PF a499

and q ∼PF pN , or p ∼PF pN and q ∼PF a.500

501

The following lemma characterises the open BCCSP‖ terms whose substitution instances502

can be equivalent in possible futures semantics to terms having at least two summands of503

pN (N > 1) as their summands.504

I Lemma 27. Let t be a BCCSP‖ term that does not have + as head operator. Let m > 1 and505

σ be a closed substitution such that σ(t) has no 0 summands or factors. If σ(t) ∼PF
∑m
k=1 b

ika,506

for some 1 ≤ i1 < · · · < im, then t = x for some variable x.507

508

We now have all the ingredients necessary to prove Theorem 23. To streamline our509

presentation, we split the proof of into two main parts: Proposition 28 deals with the510

preservation of the witness property under provability from the substitution rule of equational511

logic. Theorem 29 builds on Proposition 28 and proves the witness property to be an invariant512

under provability from finite sound axiom systems. The full proofs of these two results are513

provided in the Appendix.514

I Proposition 28. Let t ≈ u be an equation over BCCSP‖ that is sound modulo ∼PF. Let σ515

be a closed substitution with p = σ(t) and q = σ(u). Suppose that p and q have neither 0516

summands nor 0 factors, and that p, q ∼PF a ‖ pN for some N larger than the sizes of t and517

u. If p has a summand possible futures equivalent to a ‖ pN , then so does q.518

I Theorem 29. Let E be a finite axiom system over BCCSP‖ that is sound modulo ∼PF. Let519

N be larger than the size of each term in the equations in E. Assume that p and q are closed520
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terms that contain no occurrences of 0 as a summand or factor, and that p, q ∼PF a ‖ pN . If521

E ` p ≈ q and p has a summand possible futures equivalent to a ‖ pN , then so does q.522

523

As the left-hand side of equation eN , i.e., the term a‖pN , has a summand possible futures524

equivalent to a ‖ pN , whilst the right-hand side, i.e., the term apN +
∑N
i=1 b(a ‖ bi−1a), does525

not, we can conclude that the collection of infinitely many equations eN (N ≥ 1) is the526

desired witness family. This concludes the proof of Theorem 23.527

6.2 Extending the negative result528

It is easy to check that the equations eN (N ≥ 1) in the witness family of the negative result529

for ∼PF are all sound modulo bisimilarity, i.e., the largest symmetric simulation. Consequently,530

they are also sound modulo any congruence R such that ∼B ⊆ R ⊆ ∼PF. Hence, the negative531

result for all these equivalences can be derived from that for ∼PF, by exploiting this fact and532

that any finite axiom system that is sound modulo R is also sound modulo ∼PF.533

I Theorem 30. Assume that |A| ≥ 2. Let R be a congruence such that ∼B ⊆ R ⊆ ∼PF.534

Then R has no finite, ground-complete, equational axiomatisation over the language BCCSP‖.535

536

Theorem 30 can be applied to establish for n ≥ 2 that the n-nested trace and simulation537

semantics have no finite, ground-complete equational axiomatisation over BCCSP‖. The538

n-nested trace equivalences were introduced in [18] as an alternative tool to define bisimilarity.539

The hierarchy of n-nested simulations, namely simulation relations contained in a (nested)540

simulation equivalence, was introduced in [17].541

I Definition 31 (n-nested semantics). For n ≥ 0, the relation ∼nT over P, called the n-nested542

trace equivalence, is defined inductively as follows:543

p ∼0
T q for all p, q ∈ P,544

p ∼n+1
T q if and only if for all traces α ∈ A∗:545

if p α−→ p′ then there is a q′ such that q α−→ q′ and p′ ∼nT q′, and546

if q α−→ q′ then there is a p′ such that p α−→ p′ and p′ ∼nT q′.547

For n ≥ 0, the relation vnS over P is defined inductively as follows:548

p v0
S q for all p, q ∈ P,549

p vn+1
S q if and only if pR q for some simulation R , with R−1 included in vnS .550

n-nested simulation equivalence is the kernel of vnS , i.e., the equivalence ∼nS = vnS ∩ (vnS )−1.551

Notably, ∼1
T corresponds to trace equivalence, ∼2

T is possible futures equivalence, and ∼1
S552

is simulation equivalence. The following theorem is a corollary of Theorems 23 and 30.553

I Theorem 32. Assume that |A| ≥ 2. Let n ≥ 2. Then, n-nested trace equivalence and554

n-nested simulation equivalence admit no finite, ground-complete, equational axiomatisation555

over the language BCCSP‖.556

7 Concluding remarks557

We have studied the finite axiomatisability of the language BCCSP‖ modulo the behavioural558

equivalences in the linear time-branching time spectrum. On the one hand we have obtained559

finite, ground-complete axiomatisations modulo the (decorated) trace and simulation se-560

mantics in the spectrum. On the other hand we have proved that for all equivalences that are561

finer than possible futures equivalence and coarser than bisimilarity a finite ground-complete562

axiomatisation does not exist.563
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Since our ground-completeness proof for ready simulation equivalence proceeds via564

elimination of ‖ from closed terms (Proposition 3), and all behavioural equivalences in the565

linear time-branching time spectrum that include ready simulation have a finite ground-566

complete axiomatisation over BCCSP, it immediately follows from the elimination result567

that all these behavioural equivalences have a finite ground-complete axiomatisation over568

BCCSP‖. Exploiting various forms of distributivity of parallel composition over choice, we569

were able to present more concise and elegant axiomatisations for the coarser behavioural570

equivalences. We did not succeed to equationally derive the axioms of ready simulation571

equivalence from the axiomatisations of the coarser equivalences. In fact, we conjecture that572

this is not possible, and leave it for future research to find a proof.573

The parallel composition operator we have considered in this paper implements interleaving574

without synchronisation between parallel components. It is natural to consider extensions of575

our result to parallel composition operators with some form synchronisation. We expect that576

extension with CCS-style synchronisation is straightforward, both for the positive and the577

negative results. Whether this is also the case for extension with ACP-style or CSP-style578

synchronisation we leave as a topic for future investigations.579

As previously outlined, in [1] it was proved that the nested semantics admit no finite580

axiomatisation over BCCSP. However, our negative results cannot be reduced to a mere581

lifting of those in [1], as the presence of the additional operator ‖ might, at least in principle,582

allow us to finitely axiomatise the equations over BCCSP processes that are valid modulo583

the considered nested semantics. Indeed, auxiliary operators can be added to some language584

in order to obtain a finite axiomatisation of some congruence relation (see, e.g. the classic585

example given in [5]). Understanding whether it is possible to lift non-finite axiomatisability586

results among different algebras, and under which constraints this can be done, is an587

interesting research avenue and we aim to investigate it in future work. A methodology for588

transferring non-finite-axiomatisability results across languages was presented in [3], where a589

reduction-based approach was proposed. However, that method has some limitations and590

thus further studies are needed.591

A behavioural equivalence is finitely based if it has a finite equational axiomatisation592

from which all valid equations between open terms are derivable. In [13] and [2] finite bases593

for bisimilarity with respect to PA and BCCSP‖ extended with the auxiliary operators594

left merge and communication merge were presented. Furthermore, in [9] an overview was595

given of which behavioural equivalences in the linear time-branching time spectrum are596

finitely based with respect to BCCSP. The negative results in Section 6 imply that none597

of the behavioural equivalences between possible futures equivalence and bisimilarity is598

finitely based with respect to BCCSP‖. An interesting question is which of the behavioural599

equivalences including ready simulation semantics is finitely based with respect to BCCSP‖.600

In [11] an alternative classification of the equivalences in the spectrum with respect to [16]601

was proposed. In order to obtain a general, unified, view of process semantics, the spectrum602

was divided into layers, each corresponding to a different notion of constrained simulation [10].603

There are pleasing connections between the different layers and the partition they induce604

over on the congruences in the spectrum, as given in [11], and the relationships between the605

axioms for the interleaving operator we have presented in this study.606
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A Proof of Theorem 23674

Before proceeding to the proof we introduce some auxiliary results.675

For k ≥ 0, we denote by vark(t) the set of variables occurring in the k-derivatives of t,676

namely vark(t) = {x ∈ var(t′) | t α−→ t′, |α| = k}.677

I Lemma 33. Let t, u be two BCCSP‖ terms. If t ∼PF u then:678

1. For each k ≥ 0 it holds that vark(t) = vark(u).679

2. t has a summand x, for some variable x, if and only if u does.680

3. norm(t) = norm(u) and depth(t) = depth(u).681

The following result is immediate.682

I Lemma 34. Let t be a BCCSP‖ term, and let σ be a closed substitution. If x ∈ var(t)683

then depth(σ(t)) ≥ depth(σ(x)).684

I Proposition 28. Let t ≈ u be an equation over BCCSP‖ that is sound modulo ∼PF. Let σ685

be a closed substitution with p = σ(t) and q = σ(u). Suppose that p and q have neither 0686

summands nor 0 factors, and that p, q ∼PF a ‖ pN for some N larger than the sizes of t and687

u. If p has a summand possible futures equivalent to a ‖ pN , then so does q.688

Proof. Observe, first of all, that since σ(t) = p and σ(u) = q have no 0 summands or factors,689

then neither do t and u. We can therefore assume that, for some finite index sets I, J 6= ∅,690

t =
∑
i∈I

ti and u =
∑
j∈J

uj , (1)691

where none of the ti (i ∈ I) and uj (j ∈ J) is 0 or has + as its head operator. Note that, as t692

and u have no 0 summands or factors, then none of the ti (i ∈ I) and uj (j ∈ J) does either.693

Since p = σ(t) has a summand that is possible futures equivalent to a ‖ pN , there is an694

index i ∈ I such that σ(ti) ∼PF a ‖ pN . Our aim is now to show that there is an index j ∈ J695

such that σ(uj) ∼PF a ‖ pN , proving that q = σ(u) has the required summand. This we696

proceed to do by a case analysis on the form ti may have.697

1. Case ti = x for some variable x. In this case, we have that σ(x) ∼PF a ‖ pN and t698

has x as a summand. As t ≈ u is sound with respect to possible futures equivalence, from699

t ∼PF u we get t ∼CT u. Hence, by Lemma 33.2, we obtain that u has a summand x as700

well, namely there is an index j ∈ J such that uj = x. It is then immediate to conclude701

that q = σ(u) has a summand which is possible futures equivalent to a ‖ pN .702
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2. Case ti = ct′ for some action c ∈ {a, b} and term t′. This case is vacuous because,703

since σ(ti) = cσ(t′) c−→ σ(t′) is the only transition afforded by σ(ti), this term cannot be704

possible futures equivalent to a ‖ pN .705

3. Case ti = t′‖t′′ for some terms t′, t′′. We have that σ(ti) = σ(t′)‖σ(t′′) ∼PF a‖pN . As706

σ(ti) has no 0 factors, it follows that σ(t′) 6∼PF 0 and σ(t′′) 6∼PF 0. Thus, by Proposition 26,707

we can infer that, without loss of generality, σ(t′) ∼PF a and σ(t′′) ∼PF pN . Notice that708

σ(t′′) ∼PF pN implies CT(σ(t′′)) = CT(pN ). Now, t′′ can be written in the general form709

t′′ = v1 + · · · + vl for some l > 0, where none of the summands vh is 0 or a sum. By710

Lemma 25, σ(t′′) ∼PF pN implies that for each i ∈ {1, . . . , N} there is a summand ri of711

σ(t′′) such that bia ∼PF ri, and for each summand r of σ(t′′) there is an ir ∈ {1, . . . , N}712

such that r ∼PF b
ia. Observe that, since N is larger than the size of t, we have that l < N .713

Hence, there must be some h ∈ {1, . . . , l} such that σ(vh) ∼S
∑m
k=1 b

ika for some m > 1714

and 1 ≤ i1 < . . . < im ≤ N . The term σ(vh) has no 0 summands or factors, or else, so715

would σ(t′′) and σ(t). By Lemma 27, it follows that vh can only be a variable x and thus716

that717

σ(x) ∼PF

m∑
k=1

bika . (2)718

Observe, for later use, that the above equation yields that x 6∈ var(t′), or else σ(t′) 6∼PF a719

due to Lemma 34. So, modulo possible futures equivalence, ti has the form t′ ‖ (x+ t′′′),720

for some term t′′′, with x 6∈ var(t′), σ(t′) ∼PF a and σ(x+ t′′) ∼PF pN .721

Our order of business will now be to show that u has a summand uj such that σ(uj) is722

possible futures equivalent to a ‖ pN . We recall that t ∼PF u implies t ∼CT u. Thus, by723

Lemma 33.1 we obtain that vark(t) = vark(u) for all k ≥ 0. Hence, from x ∈ var0(ti) =724

var(ti) we get that there is at least one j ∈ J such that x ∈ var0(uj) = var(uj).725

So, firstly, we show that x cannot occur in the scope of prefixing in uj , namely uj cannot726

be of the form c.u′ or (c.u′ + u′′) ‖ u′′′ for some c ∈ {a, b} and u′ with x ∈ var(u′). We727

proceed by a case analysis:728

a. c = b and uj = (b.u′ + u′′) ‖ u′′′ for some u′, u′′, u′′′ ∈ BCCSP‖ with x ∈ var(u′). As729

σ(u) does not have 0 summands or factors we have that σ(u′′′) 6∼PF 0. Let D = max{d |730

x ∈ vard(u′)}. From σ(x) ∼PF
∑m
k=1 b

ika and CT(σ(u)) = CT(a ‖ pN ) we can infer that731

the completed traces of σ(u′′′) are of the form bia, for some i ∈ {0, . . . , N− im−D−1}.732

Let α ∈ T(σ(u′)) be such that |α| = D and u′
α−→ w with x ∈ var(w). By the733

choice of D, we can infer that x does not occur in the scope of prefixing in w,734

and thus T(σ(x)) ⊆ T(σ(w)). Then we get that (biabα, T(σ(w))) ∈ PF(σ(u)), where735

bia ∈ CT(σ(u′′′)). However, as m ≥ 2, there is no p′ such that a ‖ pN
biabα−−−−→ p′736

and T(σ(x)) ⊆ T(p′), thus giving (biabα, T(σ(w))) 6∈ PF(a ‖ pN ). This contradicts737

σ(u) ∼PF a ‖ pN .738

b. c = b and uj = b.u′ for some BCCSP‖ term u′ with x ∈ var(u′). The proof is similar739

to the one of the previous case and it is therefore omitted.740

c. c = a and uj = (a.u′ + u′′) ‖ u′′′ for some u′, u′′, u′′′ ∈ BCCSP‖ with x ∈ var(u′).741

As σ(u) does not have 0 summands or factors we have that σ(u′′′) 6∼PF 0. From742

σ(x) ∼PF
∑m
k=1 b

ika we infer that T(a.σ(u′)) includes traces having two occurrences of743

action a. Since σ(u) ∼PF a ‖ pN , this implies that there is no α ∈ T(σ(u′′′)) such that α744

contains an occurrence of action a, for otherwise σ(u) could perform a trace having 3745

occurrences of that action. In particular, this implies that the last symbol in each trace746

of σ(u′′′) must be action b. This gives that there is at least one completed trace of σ(uj),747

CONCUR 2020



40:20 On the axiomatisability of parallel composition

and thus of σ(u), whose last symbol is action b. Hence we get CT(σ(u)) 6= CT(a ‖ pN ),748

which contradicts σ(u) ∼PF a ‖ pN .749

d. c = a and uj = a.u′ for some BCCSP‖ term u′ with x ∈ var(u′). In this case we are750

going to prove a slightly weaker property, namely that not all summands uj with751

x ∈ var(uj) can be of this form. Consider the closed substitution σ′ defined by752

σ′(y) =
{
apN if y = x

σ(y) otherwise.
753

Then we have that σ′(ti) = σ′(t′) ‖ σ′(x) + σ′(t′′′) a−→ σ(t′) ‖ pN ∼PF a ‖ pN . Since754

σ′(t) ∼PF σ
′(u) then there is a process r such that σ′(u) a−→ r and T(r) = T(a ‖ pN ).755

In particular, this means that depth(r) = N + 2. Hence, from the choices of N, σ756

and σ′, we can infer that such an a-move by σ′(u) can only stem from a summand757

uj such that x ∈ var(uj). Assume, towards a contradiction, that all such summands758

uj are of the form a.u′j for some BCCSP‖ term u′j with x ∈ var(u′j) and r = σ′(u′j).759

As depth(σ′(u′j)) = N + 2 = depth(σ′(x)), by Lemma 34 we get that u′j can only760

be of the form u′j = x+ wj for some BCCSP‖ term wj with depth(σ′(wj)) ≤ N + 2.761

Notice that T(σ′(x)) ⊂ T(a ‖ pN ). Hence σ′(wj) 6= 0. More precisely, σ′(x) = apN762

implies that {bα | bα ∈ T(a ‖ pN )} ⊆ T(σ′(wj)) ⊆ T(a ‖ pN ). Clearly, no trace starting763

with action b can stem from σ′(x) and we can then infer, in light of Lemma 34, that764

x 6∈ var(wj), as depth(σ′(wj)) ≤ N + 2. This implies that σ′(wj) = σ(wj) and thus765

{bα | bα ∈ T(a ‖ pN )} ⊆ T(σ(wj)) ⊆ T(a ‖ pN ). In particular, σ(wj) can perform at766

least one (completed) trace of the form bα where α contains two occurrences of action767

a. From σ(uj) = a.(σ(x) + σ(wj)), then get that (abα, ∅) ∈ PF(σ(u)), namely σ(u) can768

perform at least one (completed) trace containing 3 occurrences of action a. This gives769

a contradiction with σ(u) ∼PF a ‖ pN .770

We have therefore obtained that x does not occur in the scope of prefixing in (at least771

one) uj . We proceed now by a case analysis on the possible forms of this summand.772

a. uj = x. Then, modulo possible futures equivalence, σ(u) has the form r′ +
∑m
k=1 b

ika773

for some r′. We show that this contradicts σ(u) ∼PF a ‖ pN . This follows directly by774

noticing that, due to the summand bi1a, we have that (bi1a, ∅) ∈ PF(σ(u)). However,775

(bi1a, ∅) 6∈ PF(a ‖ pN ), since a ‖ pN by performing the trace bi1a can reach either a776

process that can perform an a (in case the first b-move is performed by the summand777

bi1a of pN ) or a b (in case the first b-move is performed by a summand bia of pN such778

that i > i1).779

b. uj = (x + w) ‖ w′, for some terms w,w′ with w′ 6∼PF 0. From σ(u) ∼PF a ‖ pN , we780

infer that CT(σ(uj)) ⊆ CT(a ‖ pN ). We recall that no completed trace of a ‖ pN has b781

as last symbol and, moreover, in all the completed traces of a ‖ pN there are exactly782

two occurrences of a. Hence, all (nonempty) completed traces of σ(x), σ(w) and σ(w′)783

must have exactly one occurrence of a and this occurrence must be as the last symbol784

in the completed trace.785

We now proceed to show that σ(w′) has a summand a and a 6∈ I(σ(x) + σ(w)). We786

start by noticing that it cannot be the case that a ∈ I(σ(x) + σ(w)) ∩ I(σ(w′)), for787

otherwise we would have a2 ∈ T(σ(uj)) ⊆ T(σ(u)), thus contradicting σ(u) ∼PF a ‖ pN .788

Assume now, towards a contradiction, that I(σ(w′)) = {b}. Then, due to summand789

bima of σ(x), we have that σ(uj)
bim−1

−−−−→ ba ‖ σ(w′) and aα 6∈ T(ba ‖ σ(w′)) for any790

trace α ∈ A∗. Clearly, (bim−1, T(ba ‖ σ(w′))) ∈ PF(σ(uj)), and thus it is also a possible791

future of σ(u). However, (bim−1, T(ba ‖ σ(w′))) 6∈ PF(a ‖ pN ), as the interleaving of pN792
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with a guarantees that after an initial trace of an arbitrary number of b-transitions793

it is always possible to perform a trace starting with a. This gives a contradiction794

with σ(u) ∼PF a ‖ pN . We have obtained that a ∈ I(σ(w′)). More precisely, from the795

constraints on the completed traces of σ(w′), we infer that σ(w′) has a summand a.796

Our order of business will now be to show that σ(w′) ∼PF a. Since σ(w′) a−→ 0, we797

have that σ(uj)
a−→ (σ(x) + σ(w)) ‖ 0 ∼PF σ(x) + σ(w). Thus, σ(u) ∼PF a ‖ pN implies798

that a ‖ pN
a−→ r for some r with T(r) = T(σ(x) + σ(w)). Since a ‖ pN has only one799

possible initial a-transition, namely a ‖ pN
a−→ 0 ‖ pN , we get that r ∼PF pN and thus800

T(σ(x) + σ(w)) = T(pN ). In particular, this implies that depth(σ(x) + σ(w)) = N + 1.801

Therefore, we have802

1 ≤ depth(σ(w′)) = depth(σ(uj))− depth(σ(x) + σ(w))803

= depth(σ(uj))− (N + 1)804

≤ depth(σ(u))− (N + 1)805

= depth(a ‖ pN )− (N + 1) (by Lem. 33.3)806

= N + 2− (N + 1)807

= 1808
809

and we can therefore conclude that σ(w′) ∼PF a. Furthermore, it is not difficult810

to prove that CT(σ(x) + σ(w)) = CT(pN ), for otherwise we get a contradiction with811

σ(u) ∼PF a ‖ pN .812

So far we have obtained that, modulo possible futures equivalence,813

σ(uj) ∼PF

(
m∑
k=1

bika+ σ(w)
)
‖a and CT(

m∑
k=1

bika+σ(w)) = {bia | i ∈ {1, . . . , N}} .814

To conclude the proof, we need to show that
∑m
k=1 b

ika + σ(w) ∼PF pN . Let Im =815

{i1, . . . , im} and IN = {1, . . . , N}. Assume, towards a contradiction, that
∑m
k=1 b

ika+816

σ(w) 6∼PF pN . Notice that σ(w) can be written in the general form σ(w) =
∑
l∈L ql817

for some terms ql that do not have + as head operator nor contain any occurrence of818

‖. By Lemma 25, this means that either there is an i ∈ IN \ Im such that bia 6∼PF ql819

for any l ∈ L, or that there is a summand ql of σ(w) such that ql 6∼PF b
ia for any820

i ∈ IN . In both cases, we obtain that there is (at least) a summand ql of σ(w) such821

that bka, bha ∈ CT(ql) for some k 6= h, h, k ∈ IN . We can then proceed as in the proof822

of Lemma 25 to prove that this gives the desired contradiction. We have therefore823

obtained that
∑m
k=1 b

ika+ σ(w) ∼PF pN . Hence, by congruence closure, we get that824

σ(uj) ∼PF a ‖ pN and we can therefore conclude that σ(u) has the desired summand.825

This concludes the proof. J826

Finally, we can formally prove Theorem 29.827

I Theorem 29. Let E be a finite axiom system over BCCSP‖ that is sound modulo ∼PF. Let828

N be larger than the size of each term in the equations in E. Assume that p and q are closed829

terms that contain no occurrences of 0 as a summand or factor, and that p, q ∼PF a ‖ pN . If830

E ` p ≈ q and p has a summand possible futures equivalent to a ‖ pN , then so does q.831

832

Proof. Assume that E is a finite axiom system over the language BCCSP‖ that is sound833

modulo possible futures equivalence, and that the following hold, for some closed terms p834

and q and positive integer N larger than the size of each term in the equations in E :835
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1. E ` p ≈ q,836

2. p ∼PF q ∼PF a ‖ pN ,837

3. p and q contain no occurrences of 0 as a summand or factor, and838

4. p has a summand possible futures equivalent to a ‖ pN .839

We prove that q also has a summand possible futures equivalent to a ‖ pN by induction on840

the depth of the closed proof of the equation p ≈ q from E . Without loss of generality, we841

may assume that the closed terms involved in the proof of the equation p ≈ q have no 0842

summands or factors, and that applications of symmetry happen first in equational proofs843

(that is, E is closed with respect to symmetry).844

We proceed by a case analysis on the last rule used in the proof of p ≈ q from E . The case845

of reflexivity is trivial, and that of transitivity follows immediately by using the inductive846

hypothesis twice. Below we only consider the other possibilities.847

Case E ` p ≈ q, because σ(t) = p and σ(u) = q for some equation (t ≈ u) ∈ E848

and closed substitution σ. Since σ(t) = p and σ(u) = q have no 0 summands or849

factors, and N is larger than the size of each term mentioned in equations in E , the claim850

follows by Proposition 28.851

Case E ` p ≈ q, because p = cp′ and q = cq′ for some p′, q′ such that E ` p′ ≈ q′,852

and for some action c. This case is vacuous because p = cp′ 6∼PF a ‖ pN , and thus p853

does not have a summand possible futures equivalent to a ‖ pN .854

Case E ` p ≈ q, because p = p′ + p′′ and q = q′ + q′′ for some p′, q′, p′′, q′′ such855

that E ` p′ ≈ q′ and E ` p′′ ≈ q′′. Since p has a summand possible futures equivalent856

to a ‖ pN , we have that so does either p′ or p′′. Assume, without loss of generality, that p′857

has a summand possible futures equivalent to a‖pN . Since p is possible futures equivalent858

to a ‖ pN , so is p′. Using the soundness of E modulo possible futures equivalence, it859

follows that q′ ∼PF a ‖ pN . The inductive hypothesis now yields that q′ has a summand860

possible futures equivalent to a ‖ pN . Hence, q has a summand possible futures equivalent861

to a ‖ pN , which was to be shown.862

Case E ` p ≈ q, because p = p′ ‖ p′′ and q = q′ ‖ q′′ for some p′, q′, p′′, q′′ such that863

E ` p′ ≈ q′ and E ` p′′ ≈ q′′. Since the proof involves no uses of 0 as a summand or a864

factor, we have that p′, p′′ 6∼PF 0 and q′, q′′ 6∼PF 0. It follows that q is a summand of itself.865

By our assumptions, q′ ‖ q′′ ∼PF a ‖ pN which, by Proposition 26 gives that either q′ ∼S a866

and q′′ ∼S pN , or q′ ∼S pN and q′′ ∼S a. In both cases, we can conclude that q has itself867

as summand of the required form.868

This completes the proof of Theorem 29 and thus of Theorem 23. J869
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