A Detailed proofs

Proof (Proof of Lemma 5). Clearly if Ty C Ty, then if there exists ¢ € T} such that
s = t, then there also exists ¢ € Ty such that s - t. Hence 6 (s) (Ty) C 0 (s) (T3).

O
Proof (Proof of Lemma 6).
- 1:
0 (s) (Ty UTy) = {r € Rso | 3t € Ty UTy such that s = ¢}
= {r € Rxq | 3t € T} such that s > ¢
or 3t € Ty such that s = ¢}
= {r € Rx¢ | 3t € T} such that s = t}
U{r € Rso | 3t € Ty such that s = ¢}
=0(s)(T1) UO(s)(Tn) .
— 2: Similar to case 1.
O

Lemma 30. Let M = (S,—,¢) be a WTS and let s,t € S. s ~w t if and only
if 0(s)(T) =0(t)(T) for any ~w-equivalence class T C S.

Proof. (=) Assume s ~yy t and let T C S be a ~yy-equivalence class. If
r € 0(s)(T), then there exists some s € T such that s — s’. Because s ~y t,
there must exist some ¢’ € T such that ¢ = ¢ and s’ ~yw ¢. Since Ty is a
~-equivalence class, this means that ¢’ € T, and hence r € 6 (¢) (T'). A similar
argument shows that if r € 0 (¢t) (T'), then r € 0 (s) (T).

(=) Assume 6 (s) (T') = 0 (t) (T) for any ~y-equivalence class T' C S.
If s = s, then r € 6 (s) ([s']~y ), and therefore 7 € 6 (t) ([s']~y, ), S0 t — t' for
some s’ ~,, t'. A similar argument shows that if ¢ = ¢, then s — s’ for some
s" ~w t'. Hence s ~yy t. O

Proof (Proof of Theorem 10). We show that any weighted bisimulation is also a
bisimulation. Let M = (S, —,¢) be a WTS, and let R C S x S be a weighted
bisimulation relation. Let s,¢ € S. We have that £(s) = ¢(t), and by Lem. 30, we
have that 6 (s) (T) = 0 (¢) (T) for any R-equivalence class T C S. This implies
that in particular 6~ (s) (T) = 6~ (t) (T) and 67 (s) (T') = 0" (¢) (T). Hence R is
a bisimulation relation.

By Ex. 9, the inclusion is strict. a

Lemma 31. Given any WTS M = (S,—, ), it holds that if To 2 T1 2 ... is a
countable, decreasing sequence of subsets of S, then

0(s) (m) =N @)



Proof. We first show that 6 (s) (), T;) = 0 iff (,6(s) (T;) = 0. To this end,
assume 6 (s) (), 7;) # 0. Then there exists some r € 0 (s) ((; 7;) which means
that there exists t € ﬂz T; such that s = ¢. Hence, for all ¢ we have t € T; and

s = t. This means that r € 6 (s) (T;) for all 4, and thus r € (), 0 (s) (T}). Now
assume [); 0 (s) (T;) # 0. Then there must exist some 7’ € (), 0 (s) (T;), which

implies that for all T} there exists t € T; such that s — ¢. This implies that there

exists ¢ € [, T; such that s -, t, and hence 1" € 0 (s) (", T3), so 0 (s) (N, T3) # 0.
Now assume that 6 (s) (), 73) # 0 and (), 6 (s) (T3) # 0. Let ' € 0 (s) (", T3)-

Then there exists t € S such that t € T; for all T; and s i/» t. This means that
r’ € 6 (s) (T;) for all T;, and hence ' € ), 6 (s) (T3).
Next assume towards a contradiction that 6 (s) (), T3) < ), 0 (s) (T;), mean-

ing that there exists some ' € IR such that ' € (), 0(s)(T;) but ' ¢
0(s)(N; T3)- v € ), 0(s)(T;) implies that that for all T; there exists t € T;

such that s — ¢, which implies that there exists ¢t € (; Ti such that s It

However, 1" ¢ 0 (s) (", T;) implies that for all ¢ € (), T; we have s 772,» t, which is
a contradiction. O

Proof (Proof of Theorem 14). We first show that s ~ ¢ implies M,s = ¢ if
and only if M,t = ¢ for all ¢ € L by induction on ¢. The boolean cases
are trivial. If ¢ = L., then we have 0~ (s) ([¢)]) > r, which implies that
0~ (s) ([¥]) # —oo. Assume towards a contradiction that 6~ (¢) ([¢]) < r. It
can not be the case that 6~ (¢) ([¢)]) = —oo, hence it follows that [¢] and
0 (t) ([]) are non-empty, so there must exist some element ¢’ € [¢] such that
0~ () ([v]) <0~ (¢t) {¢'}) < r. Since R is an equivalence relation, there must
exists some R-equivalence class T' such that ¢ € T. This means that {t'} C T,
so that also 0~ (¢) (T') < 6~ (¢t) ({t'}) < r. By the induction hypothesis we have
that T C [¢]. Because s ~ ¢, we have that = (s) (T) = 6~ (¢t) (T) < r, so by
monotonicity we get 8~ (s) ([¢]) < 6~ (s) (T) < r, which is a contradiction. The
M, case is handled similarly.

For the reverse direction of the biconditional we have to show that if for all
p € L, M,s |E ¢ if and only if M,t |= ¢ then s ~ t. To this end, we define a
relation R on S as

R={(s,t) e SxS|Vpel M,sEpift M,t}=p} .

R is clearly an equivalence relation and sRt.

It is clear that ¢(s) = £(t). Next we show that 6~ (s) (T') = 60~ (¢) (T') and
0t (s)(T) = 61 (t)(T) for any R-equivalence class T. Let T C S be an R-
equivalence class and let [T] denote the set of formulae satisfied by all the states
inT, ie.

[T={pel |V eT. Mt ¢} .

Since £ is countable, we can enumerate the formulae of [T as [T = {¢o, ¢1, - - -}
For i € IN we define ¥y = ¢g and v; = ¥;_1 A ;. We then have a decreasing
sequence [to] 2 [¢1] 2 ... such that T' = [, [¢:]-



We will first show that 0 (s) (T') = 0 if and only if 6 (¢) (T') = (). This follows
from the fact that all the image sets are assumed to be compact, and hence we
can use Lem. 31 and Cantor’s intersection theorem to deduce that 6 (s) ([¢;]) = 0
for some 1);, and we then use the fact that 6 (s) ([¢;]) = 0 iff M, s = —Lot;.

Now assume that 6 (s) (T) # @ and 6 (t) (T) # 0. We need to show that
0= (s)(T) = 6~ (t)(T) and 67 (s)(T) = 6% () (T). We do this by contradic-
tion, which gives us four cases to consider: 0~ (s) (T') < 6~ (¢) (T), 6~ (s) (T) >
0= (1) (T), 07 (5) (T) < 0% (t) (T), and 0% (s) (T) > 6% (t) (T).

For the case of 6~ (s) (T') < 0~ (¢) (T'), there exists ¢ € Q~ such that

0~ (s)(T) <g <6 ()(T) ,
which implies that there exist j such that

0= (s)(T) <q <0~ (1) ([ys]) <0~ () (T) ,

and since 67 (s) ([vs]) < 6~ (s)(T) for any ¢ by monotonicity, we get that
M, sl Lgyp; and M, s = Lgtp;, which is a contradiction. The other cases are
handled similarly. a

Proof (Proof of Theorem 15). The soundness of each axiom is easy to show, and
many of them use the distributive property from Lem. 6. Here we prove the
soundness for a few of the more interesting axioms.

A3
Suppose M, s = L, A Lqtp implying that M, s = Lyp and M,s = Lg1),
implying further that 6= (s) ([¢]) > r and 0~ (s) ([¢]) > ¢
By Lem. 6 we must have that

0(s) (e v ol) = 0(s) (L] U []) = 6 (s) (Ie]) L 6 () ([4])
and because 0~ (s) ([¢]) > r and 6~ (s) ([¢]) > ¢ we must have

~(8) (e v l) = inf 0 (s) ([£]) VO (5) ([¥]) = min{r, ¢}

implying M, s = Liingr,qye V9.
A4
Suppose M, s = L,.(p V ¢) implying that

0~ (s) (v v 1) = inf 0 (s) ([e]) L O (s) ([¥]) = 7 -

This implies that at least one of 0 (s) ([¢]) and 6 (s) ([¢]) is non-empty.
If 0 (s) ([¢]) # 0, then 6~ (s) ([]) > r, and also if 0 (s) ([¢)]) # 0, then
~(s) ([¥]) > 7, so at least one of M, s |= L,y and M, s |= L1 must hold.
Hence M, s = L,y V L.1.
A6
Suppose M, s = L4 implying that

~(8) ([e]) = inf 6 (s) (Tel) = 7 + ¢ -



It is clear that inf 0 (s) ([¢]) < supf (s) ([¢]), so

0" (s) (e]) = sup 0 (s) ([¢]) = inf O (s) ([e]) =7 +a>7 .
Therefore, it cannot be the case that M, s = M,¢ and thus M, s = =M.
R1

Suppose = ¢ — v implying that [¢] C [¢], implying further, by the
monotonicity of 6, that 6 (s) ([¢]) C 6 (s) ([#]). Suppose further that M, s =
L, A Loy implying M, s = L4 and M, s = Loy, implying further that

07 (s) ([¢]) = inf 0 (s) ([¢]) = and 6 (s)([]) #0 .

Since 0 (s) ([¢]) is non-empty, we then get that

inf 0 (s) ([#]) = inf 6 (s) ([¢]) = 7,

which means that M, s = L.
O

Lemma 32. From the azioms listed in Tab. 1 we can derive the following theo-
rems:

(TD: F (Lop A Lgth A Lo( A8)) = Lunsgry (9 A )
(T1): = (Mrp A Mgap A Lo( A1p)) = Migingr,qy (9 A )
(T2): P+t = F Lo Loy

(T2):F o+ v = F Mo < M

(T3): +=L,.L, r>0

(T4): Fo— 1L = F-=Lp, r>0

(T5): F My (V) — MoV M)

Proof.

T1 Axiom R1 implies

F =Lyl A) = (~Lgp V ~Lo(p AY))

so also
F =Ly Ap) = (nLgp V =Lo(p Ap) V = L,y) .

This is equivalent to

F(Lro N Lgp A Lo(p A)) — Lg(p A) .

T1’ Similar to T1.

T2 Suppose F ¢ < . If F L., then axiom A2 gives - Loy, and axiom R2
then gives - L. Finally, axiom R1 then implies - L. A similar argument
shows that if - L,1, then - L.p. Hence - L,.p < L.

T2’ Similar to T2.

T3 From axiom Al we know that - =Ly which, by the contrapositive of A2,
implies - L, L for any r > 0.



T4 Suppose - ¢ — L. We know for any ¥ € £ that - 1L — 1 and therefore
Fo—1 =F e+ L From Al we know that - =Ly L and from T3 that
F =L, 1 for any r > 0 implying, by T2, that - L, for any r > 0.

T5 Assume F M, (¢ V). By axiom A7 we get F Lo(¢ V1), and axiom A4 then
gives F Loy V Lotp. Since - ¢ — ¢ V¢ and F ¢ — ¢ V 9, axiom R1’ then
gives F Mo V M, 1.

O

Proof (Proof of Lemma 18). Assume towards a contradiction that L(u,v) = ()
and M (u,v) # 0. Then we have —Lo(v) € u and there exists some r € @), such
that M. (v) € u. However, by axiom A7, this implies that Lo(v) € u, which is a
contradiction. O

Lemma 33. For any ultrafilters u,v € U[p|, if L(u,v) # 0 and M(u,v) # 0,
then max L(u,v) < min M (u,v).

Proof. Assume towards a contradiction that max L(u,v) > min M (u,v). Then
there exist ¢,¢’ € Q, such that ¢ > ¢/, Ly(v) € u and My (v) € u. Since ¢ > ¢/,
axiom A6 gives =My (v) € u, which is a contradiction. O

Lemma 34. For any consistent formula ¢ € L[p], if [M,,u |= ¢ iff € u], then

\/ W euw iff peu .

vele]

Proof. Suppose V¢, (V) € u. Assume towards a contradiction that —(v) € u
for all v € [¢]. Then, since u is an ultrafilter, we must have A . ~(v) € u,
which means that —=\/, . j(v) € u, which is a contradiction. Hence there exists
some v’ € [¢] such that (v') € u. If ¢ € v/, then F (v')) — v, so ¥ € u because u
is an ultrafilter. Since v’ € [¢], we have by assumption that ¢ € v', so we get
P € u.

Suppose ¢ € u, which by assumption means that v € [¢], so F (u) —
Voeppp (v)- Since w is an ultrafilter, we have (u) € u, and hence \/, () € u.

Proof (Proof of Lemma 19). The proof is by induction on the structure of (.
The boolean cases are trivial. For the case ¢ = L1, we proceed as follows.

(=) Assume M, u = L1, meaning that 6~ (u) ([¢)]) > r. It can not
be the case that 6 (u) ([¢']) = 0, because otherwise 0~ (u) ([¢/]) = —oo, and we
have assumed 0~ (u) ([¥]) > r. It also can not be the case that [¢] = 0, because
otherwise 6 (u) ([¢/]) = 0. We can partition all the ultrafilters v € [i/] as follows.
Let E={v e [¢] | L(u,v) =0} and N = {v € [¢] | L(u,v) # 0}. We then get
that ENN =0, EUN = [¢], =Lo(v) € u for all v € E, and L, (v) € u for all
v € N. Because u is an ultrafilter, we then have

/\ Lo (v) A /\ L.(v) eu .

veE veEN



By axiom A3, this implies

A ~Lo@) AL \/ () €u .

veE vEN

Then axiom Ab gives
L, \/ () € u .
vely]
By the induction hypothesis, T2, and Lem. 34, we then get L,v¢ € u.

(=) Let L,v € u. It follows from Al, A2, and R2 that 1 is consis-
tent. Hence, by the induction hypothesis, [¢] is non-empty. We first show that
0 (u) ([¢]) # 0. Assume therefore towards a contradiction that 6 (u) ([¢]) = 0.
Then for all v € [¢], we must have that case 3 holds, and hence L(u,v) = 0,
meaning —L,(v) € u for all v € [¢]. Since there are finitely many v € [[¢], we
can enumerate them as v, vs,...,v,. Then, since u is an ultrafilter, we have

ALy (1) A —Lp(ua) A+ A=Lp(un) € u .
By De Morgan’s law, this is equivalent to
(Lp(ui) V Lp(ua) V - -V Lyvg) € u .
The contrapositive of axiom A4 then gives that
Le((oi) V (u2) Voo V(o) €u

and by the induction hypothesis, T2, and Lem. 34, this is equivalent to =L,¥ € u,
which is a contradiction.

Now assume towards a contradiction that 6~ (u) ([¢]) < r. Then there exists
some v € [¢] such that 6~ (u) ({v}) < r and case 1 or case 2 holds. In either
case we have max L(u,v) < r and hence there exists some ¢ € @, such that
L,(v) € u, which implies Ly(v) € u by axiom A2. By the induction hypothesis,
¥ € v, which means that F (v) — . Axiom R1 then gives L, (v) € u, but this is
a contradiction since max L(u, v) < 7.

The M, case is similar, using axiom A7 instead of A2 to derive Loy € u. O

Proof (Proof of Theorem 20). Since ¢ € L is consistent, the Rasiowa-Sikorski
lemma [1] guarantees that there exists an ultrafilter u € U[p] such that ¢ € u.
By the truth lemma, this means that M, u |= ¢, and by construction, M, is a
finite model. a

Proof (Proof of Theorem 21).
E ¢ implies F ¢
is equivalent to
/¢ implies } o,
which is equivalent to

the consistency of —p implies the existence of a model for =p ,

and this is guaranteed by the truth lemma. ad



Lemma 35. For any mazimal set I' C L[p], we have that

1. p eI and Y € I' implies p AN € I', and
2. pel' ory el impliespVyel.

Proof. To prove the first part, assume ¢ € I' and ¢ € I'. By P1, we know that
either p A € I' or =(p Ap) € I'. If =(p Ayp) € I, then by P3 we must have
—p € I' or ~¢p € I', which is a contradiction.

To prove the second part, assume ¢ € I' or ¢ € I'. By P1, we know that
either p Vip € I' or =(p V) € I'. If =(¢ V1) € I', then by P2 we must have
—p € I' and ¢ € I', which is a contradiction. a

Lemma 36. For arbitrary mazimal set of formulae I' C L[p] it holds that
pevel implies Lrpel iff Lpel .

Proof. Let I' € L[p] be a maximal set of formulae and suppose ¢ +> ¢ € I'.

If L.p € I" we have, by Q2, that Loy € I" implying, by Q9, that Loy € I". We
thus have L,p € I' and Loy € I' implying, by P1 and P2, that L, A Loty € I
and therefore, by Q8, that L.y € I

If L.¢p € I' we have, by Q2, that Loy € I' implying, by Q9, that Loy € I'. We
thus have L,v € I' and Loy € I" implying, by P1 and P2, that L.t A Lo € I
and therefore, by Q8, that L,.p € I'. ad

For arbitrary ¢ € L[p], £2,, denotes the collection of all maximal sets I" in the
language of p such that ¢ is contained in I, i.e.

2, ={I"C L[p] | ¢ € I and I' is maximal} .

Lemma 37. For arbitrary formula ¢ € L[p] and mazimal set of formulae I' C
L[p] it holds that

\ (el iff perl .
r,en,

Proof. Let ¢ € L]p] be a formula and I" C L[p] a maximal set of formulae.

Suppose vﬂae% (I'y) € I" implying, by P3, the existence of I', € {2, such
that (I°,) € I" implying further for all ¢ € I, that ¢ € I". Because I, € {2, we
must have ¢ € I, and therefore ¢ € I.

Suppose ¢ € I implying that I" € £2,. By P1 we must have either (I') € I
or (') € I. (') € I' is equivalent to vwef —p € I' implying, by P3, the
existence of a formula ¢ € I" such that —¢ € I" which, by P1, is a contradiction
and therefore (I') € I' implying, by P1 and P2, that VFwGUw (Iy) eI O

Lemma 38. For arbitrary mazimal sets of formulae I, T € L[p] it holds that

M(I,T') #0  implies max L(I,T") < min M (I, I"")



Proof. Let I I'" € L[p] be maximal sets of formulae and suppose M (I, I"") # ().
There must exist a rational number g € Qs such that ¢ € M (I', I'") implying that
My(I"") € I implying further, by Q7, that Lo(I”) € I" and therefore L(I', ") # (.

Suppose towards a contradiction that max L(I,I"") > min M (I', I'"’) implying
the existence of a rational number ¢ € Q- such that max L(I, ") > ¢ >
min M (I, I"). ¢ > min M (I, ") implies the existence of a rational number
r € Qs such that r < ¢ and » € M(I',I") which further implies M, (") € I".
max L(I,I") > q implies the existence of a rational number 1’ € Q- such that
r" > qand v’ € L(I',I"") implying further that L,,(I") € I" which, by Q6, implies
- M, (I'") € I'. We thus have M, (I'') € I" and =M, (I"’) € I" which, according to
P1, is a contradiction and therefore max L(I', I'") < min M (I, I"). O

Proof (Proof of Lemma 26). Let p € L and ¢ € L[p] be formulae. The proof is by
induction on ¢. The boolean cases are trivial. For the case ¢ = L1, we proceed
as follows.

(=) Suppose L1 € I' implying by Q2 that Loy € I'. We first show
that [¢] # 0, which can be established by contradiction using P1, P2, Q1, and
Q9.

Suppose towards a contradiction that 6 (I") ([¢/]) = @ implying that ~Lo (") €
I for all I'" € [¢]. Because [¢] is finite, it can be enumerated as [¢] =
{Iv,I1,...,I}. By P1 we must have either L, (Io) V Ly ([W) V-V L. ([,) € T’
or ~(Ly(Io) V L([1) V-V Ly(I3,) € I'. However, in the first case we get
Lo(I'") € I'y which is a contradiction, and in the second case we get L. € T,
which is also a contradiction.

Suppose towards a contradiction that = (I') ([¢]) < r implying the existence
of I'" € [¥] such that I" =, I where = < r, implying further by Lem. 38 that
max L(I',I") < r. This implies the existence of some ¢ € R,, ¢ < r such that
L,(I"") € I' which, by Q2, implies that Lo(["”) € I'. By the inductive hypothesis,
we must have 1 € I'" and therefore we get (I'') — ¢ € I'" by P2. Q8 then yields
that L,.(I"') € I" which, since max L(I,I") < r, is a contradiction and therefore
0~ (I') ([¥]) > r implying M, I' = L)

(=) Suppose M,,, I" = L,y implying 0~ (I") ([¢]) > r. This means
that 6 (I") ([+)]) # 0 and hence [¢)] # 0. We can partition [¢] in the following
way. Let E = {I" € [¢] | L(I,)I") =0} and N = {I" € [¢)] | L(I, I") # (0}, then
we have EUN = [¢], ENN =0, =Lo(I"') € I for all I" € E, and L,(I"') € I'
for all I'" € N. Lemma 35 then gives

N\ ~Lo(T')n N\ L) el .
I'ek I'"'eN

By Q3, this implies that
N\ ~Lo(')AL, \/ (I)erl,
Iek I'"eN

so Qb gives
L. \/ (M)er.

Iely]



By the induction hypothesis, Lem. 37, and Lem. 36, this implies that L,y € I".
The M, case is similar, using Q7 instead of Q2 to establish that Loy € I'. O

Proof (Proof of Theorem 27). (1 = 2) Suppose there exists a maximal set
I' € 2P such that p € I'. We can then construct the WTS M, given by Def.
25. Then by Lem. 26 we have M, I" |= p.

2 =1 Suppose there exists some model M = (S, —, /) such that
M, s = p for some s € S. Let I, = {p € L[p] | M,m = ¢}. Clearly p € I},,. It
remains to be shown that I, is maximal.

Pl: pe [, iff M,mE o iff M,m}E—piff ~p ¢ Iy,

P2: If oAt € Ty, then M, m = p A1), meaning that M, m = ¢ and M, m = .
Hence ¢ € I, and ¢ € I3,,.

P3: If p Vo € I, then M, m = ¢ V1, meaning that M, m = ¢ or M, m = .
Hence p € I, or ¢ € I,.

We have thus proven that I, is propositionally maximal. The fact that I,
is quantitatively maximal can be proven in exactly the same way as in the proof
of Thm. 15. Hence I, is maximal. a
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