
A Detailed proofs

Proof (Proof of Lemma 5). Clearly if T1 ⊆ T2, then if there exists t ∈ T1 such that

s
r−→ t, then there also exists t ∈ T2 such that s

r−→ t. Hence θ (s) (T1) ⊆ θ (s) (T2).
ut

Proof (Proof of Lemma 6).

– 1:

θ (s) (T1 ∪ T2) = {r ∈ IR≥0 | ∃t ∈ T1 ∪ T2 such that s
r−→ t}

= {r ∈ IR≥0 | ∃t ∈ T1 such that s
r−→ t

or ∃t ∈ T2 such that s
r−→ t}

= {r ∈ IR≥0 | ∃t ∈ T1 such that s
r−→ t}

∪ {r ∈ IR≥0 | ∃t ∈ T2 such that s
r−→ t}

= θ (s) (T1) ∪ θ (s) (T2) .

– 2: Similar to case 1.
ut

Lemma 30. Let M = (S,→, `) be a WTS and let s, t ∈ S. s ∼W t if and only
if θ (s) (T ) = θ (t) (T ) for any ∼W -equivalence class T ⊆ S.

Proof. ( =⇒ ) Assume s ∼W t and let T ⊆ S be a ∼W -equivalence class. If

r ∈ θ (s) (T ), then there exists some s′ ∈ T such that s
r−→ s′. Because s ∼W t,

there must exist some t′ ∈ T such that t
r−→ t′ and s′ ∼W t′. Since TW is a

∼-equivalence class, this means that t′ ∈ T , and hence r ∈ θ (t) (T ). A similar
argument shows that if r ∈ θ (t) (T ), then r ∈ θ (s) (T ).

(⇐= ) Assume θ (s) (T ) = θ (t) (T ) for any ∼W -equivalence class T ⊆ S.

If s
r−→ s′, then r ∈ θ (s) ([s′]∼W ), and therefore r ∈ θ (t) ([s′]∼W ), so t

r−→ t′ for

some s′ ∼w t′. A similar argument shows that if t
r−→ t′, then s

r−→ s′ for some
s′ ∼W t′. Hence s ∼W t. ut

Proof (Proof of Theorem 10). We show that any weighted bisimulation is also a
bisimulation. Let M = (S,→, `) be a WTS, and let R ⊆ S × S be a weighted
bisimulation relation. Let s, t ∈ S. We have that `(s) = `(t), and by Lem. 30, we
have that θ (s) (T ) = θ (t) (T ) for any R-equivalence class T ⊆ S. This implies
that in particular θ− (s) (T ) = θ− (t) (T ) and θ+ (s) (T ) = θ+ (t) (T ). Hence R is
a bisimulation relation.

By Ex. 9, the inclusion is strict. ut

Lemma 31. Given any WTS M = (S,→, `), it holds that if T0 ⊇ T1 ⊇ . . . is a
countable, decreasing sequence of subsets of S, then

θ (s)

(⋂
i

Ti

)
=
⋂
i

θ (s) (Ti) .



Proof. We first show that θ (s) (
⋂
i Ti) = ∅ iff

⋂
i θ (s) (Ti) = ∅. To this end,

assume θ (s) (
⋂
i Ti) 6= ∅. Then there exists some r ∈ θ (s) (

⋂
i Ti) which means

that there exists t ∈
⋂
i Ti such that s

r−→ t. Hence, for all i we have t ∈ Ti and

s
r−→ t. This means that r ∈ θ (s) (Ti) for all i, and thus r ∈

⋂
i θ (s) (Ti). Now

assume
⋂
i θ (s) (Ti) 6= ∅. Then there must exist some r′ ∈

⋂
i θ (s) (Ti), which

implies that for all Ti there exists t ∈ Ti such that s
r′−→ t. This implies that there

exists t ∈
⋂
i Ti such that s

r′−→ t, and hence r′ ∈ θ (s) (
⋂
i Ti), so θ (s) (

⋂
i Ti) 6= ∅.

Now assume that θ (s) (
⋂
i Ti) 6= ∅ and

⋂
i θ (s) (Ti) 6= ∅. Let r′ ∈ θ (s) (

⋂
i Ti).

Then there exists t ∈ S such that t ∈ Ti for all Ti and s
r′−→ t. This means that

r′ ∈ θ (s) (Ti) for all Ti, and hence r′ ∈
⋂
i θ (s) (Ti).

Next assume towards a contradiction that θ (s) (
⋂
i Ti) (

⋂
i θ (s) (Ti), mean-

ing that there exists some r′ ∈ IR≥0 such that r′ ∈
⋂
i θ (s) (Ti) but r′ /∈

θ (s) (
⋂
i Ti). r

′ ∈
⋂
i θ (s) (Ti) implies that that for all Ti there exists t ∈ Ti

such that s
r′−→ t, which implies that there exists t ∈

⋂
i Ti such that s

r′−→ t.

However, r′ /∈ θ (s) (
⋂
i Ti) implies that for all t ∈

⋂
i Ti we have s 6 r

′

−→ t, which is
a contradiction. ut

Proof (Proof of Theorem 14). We first show that s ∼ t implies M, s |= ϕ if
and only if M, t |= ϕ for all ϕ ∈ L by induction on ϕ. The boolean cases
are trivial. If ϕ = Lrψ, then we have θ− (s) (JψK) ≥ r, which implies that
θ− (s) (JψK) 6= −∞. Assume towards a contradiction that θ− (t) (JψK) < r. It
can not be the case that θ− (t) (JψK) = −∞, hence it follows that JψK and
θ (t) (JψK) are non-empty, so there must exist some element t′ ∈ JψK such that
θ− (t) (JψK) ≤ θ− (t) ({t′}) < r. Since R is an equivalence relation, there must
exists some R-equivalence class T such that t′ ∈ T . This means that {t′} ⊆ T ,
so that also θ− (t) (T ) ≤ θ− (t) ({t′}) < r. By the induction hypothesis we have
that T ⊆ JψK. Because s ∼ t, we have that θ− (s) (T ) = θ− (t) (T ) < r, so by
monotonicity we get θ− (s) (JψK) ≤ θ− (s) (T ) < r, which is a contradiction. The
Mr case is handled similarly.

For the reverse direction of the biconditional we have to show that if for all
ϕ ∈ L, M, s |= ϕ if and only if M, t |= ϕ then s ∼ t. To this end, we define a
relation R on S as

R = {(s, t) ∈ S × S | ∀ϕ ∈ L.M, s |= ϕ iffM, t |= ϕ} .

R is clearly an equivalence relation and sRt.
It is clear that `(s) = `(t). Next we show that θ− (s) (T ) = θ− (t) (T ) and

θ+ (s) (T ) = θ+ (t) (T ) for any R-equivalence class T . Let T ⊆ S be an R-
equivalence class and let JT K denote the set of formulae satisfied by all the states
in T , i.e.

JT K = {ϕ ∈ L | ∀t′ ∈ T.M, t′ |= ϕ} .

Since L is countable, we can enumerate the formulae of JT K as JT K = {ϕ0, ϕ1, . . .}.
For i ∈ IN we define ψ0 = ϕ0 and ψi = ψi−1 ∧ ϕi. We then have a decreasing
sequence Jψ0K ⊇ Jψ1K ⊇ . . . such that T =

⋂
i∈INJψiK.



We will first show that θ (s) (T ) = ∅ if and only if θ (t) (T ) = ∅. This follows
from the fact that all the image sets are assumed to be compact, and hence we
can use Lem. 31 and Cantor’s intersection theorem to deduce that θ (s) (JψiK) = ∅
for some ψi, and we then use the fact that θ (s) (JψiK) = ∅ iff M, s |= ¬L0ψi.

Now assume that θ (s) (T ) 6= ∅ and θ (t) (T ) 6= ∅. We need to show that
θ− (s) (T ) = θ− (t) (T ) and θ+ (s) (T ) = θ+ (t) (T ). We do this by contradic-
tion, which gives us four cases to consider: θ− (s) (T ) < θ− (t) (T ), θ− (s) (T ) >
θ− (t) (T ), θ+ (s) (T ) < θ+ (t) (T ), and θ+ (s) (T ) > θ+ (t) (T ).

For the case of θ− (s) (T ) < θ− (t) (T ), there exists q ∈ Q≥0 such that

θ− (s) (T ) < q < θ− (t) (T ) ,

which implies that there exist j such that

θ− (s) (T ) < q < θ− (t) (JψjK) ≤ θ− (t) (T ) ,

and since θ− (s) (JψiK) ≤ θ− (s) (T ) for any i by monotonicity, we get that
M, s 6|= Lqψj and M, s |= Lqψj , which is a contradiction. The other cases are
handled similarly. ut

Proof (Proof of Theorem 15). The soundness of each axiom is easy to show, and
many of them use the distributive property from Lem. 6. Here we prove the
soundness for a few of the more interesting axioms.

A3
Suppose M, s |= Lrϕ ∧ Lqψ implying that M, s |= Lrϕ and M, s |= Lqψ,
implying further that θ− (s) (JϕK) ≥ r and θ− (s) (JψK) ≥ q.
By Lem. 6 we must have that

θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK ∪ JψK) = θ (s) (JϕK) ∪ θ (s) (JψK)

and because θ− (s) (JϕK) ≥ r and θ− (s) (JψK) ≥ q we must have

θ− (s) (Jϕ ∨ ψK) = inf θ (s) (JϕK) ∪ θ (s) (JψK) ≥ min {r, q}

implying M, s |= Lmin{r,q}ϕ ∨ ψ.
A4

Suppose M, s |= Lr(ϕ ∨ ψ) implying that

θ− (s) (Jϕ ∨ ψK) = inf θ (s) (JϕK) ∪ θ (s) (JψK) ≥ r .

This implies that at least one of θ (s) (JϕK) and θ (s) (JψK) is non-empty.
If θ (s) (JϕK) 6= ∅, then θ− (s) (JϕK) ≥ r, and also if θ (s) (JψK) 6= ∅, then
θ− (s) (JψK) ≥ r, so at least one of M, s |= Lrϕ and M, s |= Lrψ must hold.
Hence M, s |= Lrϕ ∨ Lrψ.

A6
Suppose M, s |= Lr+qϕ implying that

θ− (s) (JϕK) = inf θ (s) (JϕK) ≥ r + q .



It is clear that inf θ (s) (JϕK) ≤ sup θ (s) (JϕK), so

θ+ (s) (JϕK) = sup θ (s) (JϕK) ≥ inf θ (s) (JϕK) ≥ r + q > r .

Therefore, it cannot be the case that M, s |= Mrϕ and thus M, s |= ¬Mrϕ.
R1

Suppose |= ϕ → ψ implying that JϕK ⊆ JψK, implying further, by the
monotonicity of θ, that θ (s) (JϕK) ⊆ θ (s) (JψK). Suppose further thatM, s |=
Lrψ ∧ L0ϕ implying M, s |= Lrψ and M, s |= L0ϕ, implying further that

θ− (s) (JψK) = inf θ (s) (JψK) ≥ r and θ (s) (JϕK) 6= ∅ .

Since θ (s) (JϕK) is non-empty, we then get that

inf θ (s) (JϕK) ≥ inf θ (s) (JψK) ≥ r ,

which means that M, s |= Lrϕ.
ut

Lemma 32. From the axioms listed in Tab. 1 we can derive the following theo-
rems:
(T1): ` (Lrϕ ∧ Lqψ ∧ L0(ϕ ∧ ψ))→ Lmax{r,q}(ϕ ∧ ψ)
(T1′): ` (Mrϕ ∧Mqψ ∧ L0(ϕ ∧ ψ))→Mmin{r,q}(ϕ ∧ ψ)
(T2): ` ϕ↔ ψ =⇒ ` Lrϕ↔ Lrψ
(T2′): ` ϕ↔ ψ =⇒ `Mrϕ↔Mrψ
(T3): ` ¬Lr⊥, r > 0
(T4): ` ϕ→ ⊥ =⇒ ` ¬Lrϕ, r ≥ 0
(T5): `Mr(ϕ ∨ ψ)→Mrϕ ∨Mrψ

Proof.

T1 Axiom R1 implies

` ¬Lq(ϕ ∧ ψ)→ (¬Lqϕ ∨ ¬L0(ϕ ∧ ψ)) ,

so also
` ¬Lq(ϕ ∧ ψ)→ (¬Lqϕ ∨ ¬L0(ϕ ∧ ψ) ∨ ¬Lrψ) .

This is equivalent to

` (Lrϕ ∧ Lqψ ∧ L0(ϕ ∧ ψ))→ Lq(ϕ ∧ ψ) .

T1′ Similar to T1.
T2 Suppose ` ϕ ↔ ψ. If ` Lrϕ, then axiom A2 gives ` L0ϕ, and axiom R2

then gives ` L0ψ. Finally, axiom R1 then implies ` Lrψ. A similar argument
shows that if ` Lrψ, then ` Lrϕ. Hence ` Lrϕ↔ Lrψ.

T2′ Similar to T2.
T3 From axiom A1 we know that ` ¬L0⊥ which, by the contrapositive of A2,

implies ¬Lr⊥ for any r > 0.



T4 Suppose ` ϕ → ⊥. We know for any ψ ∈ L that ` ⊥ → ψ and therefore
` ϕ→ ⊥ =⇒ ` ϕ↔ ⊥. From A1 we know that ` ¬L0⊥ and from T3 that
` ¬Lr⊥ for any r > 0 implying, by T2, that ` Lrϕ for any r ≥ 0.

T5 Assume `Mr(ϕ ∨ ψ). By axiom A7 we get ` L0(ϕ ∨ ψ), and axiom A4 then
gives ` L0ϕ ∨ L0ψ. Since ` ϕ → ϕ ∨ ψ and ` ψ → ϕ ∨ ψ, axiom R1′ then
gives `Mrϕ ∨Mrψ.

ut

Proof (Proof of Lemma 18). Assume towards a contradiction that L(u, v) = ∅
and M(u, v) 6= ∅. Then we have ¬L0LvM ∈ u and there exists some r ∈ Qρ such
that MrLvM ∈ u. However, by axiom A7, this implies that L0LvM ∈ u, which is a
contradiction. ut

Lemma 33. For any ultrafilters u, v ∈ U [ρ], if L(u, v) 6= ∅ and M(u, v) 6= ∅,
then maxL(u, v) ≤ minM(u, v).

Proof. Assume towards a contradiction that maxL(u, v) > minM(u, v). Then
there exist q, q′ ∈ Qρ such that q > q′, LqLvM ∈ u and Mq′LvM ∈ u. Since q > q′,
axiom A6 gives ¬Mq′LvM ∈ u, which is a contradiction. ut

Lemma 34. For any consistent formula ϕ ∈ L[ρ], if [Mρ, u |= ϕ iff ϕ ∈ u], then∨
v∈JϕK

LvM ∈ u iff ϕ ∈ u .

Proof. Suppose
∨
v∈JϕKLvM ∈ u. Assume towards a contradiction that ¬LvM ∈ u

for all v ∈ JϕK. Then, since u is an ultrafilter, we must have
∧
v∈JϕK ¬LvM ∈ u,

which means that ¬
∨
v∈JϕKLvM ∈ u, which is a contradiction. Hence there exists

some v′ ∈ JϕK such that Lv′M ∈ u. If ψ ∈ v′, then ` Lv′M→ ψ, so ψ ∈ u because u
is an ultrafilter. Since v′ ∈ JϕK, we have by assumption that ϕ ∈ v′, so we get
ϕ ∈ u.

Suppose ϕ ∈ u, which by assumption means that u ∈ JϕK, so ` LuM →∨
v∈JϕKLvM. Since u is an ultrafilter, we have LuM ∈ u, and hence

∨
v∈JϕKLvM ∈ u.

ut

Proof (Proof of Lemma 19). The proof is by induction on the structure of ϕ.
The boolean cases are trivial. For the case ϕ = Lrψ, we proceed as follows.

( =⇒ ) Assume Mρ, u |= Lrψ, meaning that θ− (u) (JψK) ≥ r. It can not
be the case that θ (u) (JψK) = ∅, because otherwise θ− (u) (JψK) = −∞, and we
have assumed θ− (u) (JψK) ≥ r. It also can not be the case that JψK = ∅, because
otherwise θ (u) (JψK) = ∅. We can partition all the ultrafilters v ∈ JψK as follows.
Let E = {v ∈ JψK | L(u, v) = ∅} and N = {v ∈ JψK | L(u, v) 6= ∅}. We then get
that E ∩N = ∅, E ∪N = JψK, ¬L0LvM ∈ u for all v ∈ E, and LrLvM ∈ u for all
v ∈ N . Because u is an ultrafilter, we then have∧

v∈E
¬L0LvM ∧

∧
v∈N

LrLvM ∈ u .



By axiom A3, this implies∧
v∈E
¬L0LvM ∧ Lr

∨
v∈N

LvM ∈ u .

Then axiom A5 gives

Lr
∨

v∈JψK

LvM ∈ u .

By the induction hypothesis, T2, and Lem. 34, we then get Lrψ ∈ u.
( ⇐= ) Let Lrψ ∈ u. It follows from A1, A2, and R2 that ψ is consis-

tent. Hence, by the induction hypothesis, JψK is non-empty. We first show that
θ (u) (JψK) 6= ∅. Assume therefore towards a contradiction that θ (u) (JψK) = ∅.
Then for all v ∈ JψK, we must have that case 3 holds, and hence L(u, v) = ∅,
meaning ¬LrLvM ∈ u for all v ∈ JψK. Since there are finitely many v ∈ JψK, we
can enumerate them as v1, v2, . . . , vn. Then, since u is an ultrafilter, we have

¬LrLv1M ∧ ¬LrLv2M ∧ · · · ∧ ¬LrLvnM ∈ u .

By De Morgan’s law, this is equivalent to

¬(LrLv1M ∨ LrLv2M ∨ · · · ∨ LrLvnM) ∈ u .

The contrapositive of axiom A4 then gives that

¬Lr(Lv1M ∨ Lv2M ∨ · · · ∨ LvnM) ∈ u ,

and by the induction hypothesis, T2, and Lem. 34, this is equivalent to ¬Lrψ ∈ u,
which is a contradiction.

Now assume towards a contradiction that θ− (u) (JψK) < r. Then there exists
some v ∈ JψK such that θ− (u) ({v}) < r and case 1 or case 2 holds. In either
case we have maxL(u, v) < r and hence there exists some q ∈ Qρ such that
LqLvM ∈ u, which implies L0LvM ∈ u by axiom A2. By the induction hypothesis,
ψ ∈ v, which means that ` LvM→ ψ. Axiom R1 then gives LrLvM ∈ u, but this is
a contradiction since maxL(u, v) < r.

The Mr case is similar, using axiom A7 instead of A2 to derive L0ψ ∈ u. ut

Proof (Proof of Theorem 20). Since ϕ ∈ L is consistent, the Rasiowa-Sikorski
lemma [1] guarantees that there exists an ultrafilter u ∈ U [ϕ] such that ϕ ∈ u.
By the truth lemma, this means that Mϕ, u |= ϕ, and by construction, Mϕ is a
finite model. ut

Proof (Proof of Theorem 21).

|= ϕ implies ` ϕ

is equivalent to
6` ϕ implies 6|= ϕ ,

which is equivalent to

the consistency of ¬ϕ implies the existence of a model for ¬ϕ ,

and this is guaranteed by the truth lemma. ut



Lemma 35. For any maximal set Γ ⊆ L[ρ], we have that

1. ϕ ∈ Γ and ψ ∈ Γ implies ϕ ∧ ψ ∈ Γ , and

2. ϕ ∈ Γ or ψ ∈ Γ implies ϕ ∨ ψ ∈ Γ .

Proof. To prove the first part, assume ϕ ∈ Γ and ψ ∈ Γ . By P1, we know that
either ϕ ∧ ψ ∈ Γ or ¬(ϕ ∧ ψ) ∈ Γ . If ¬(ϕ ∧ ψ) ∈ Γ , then by P3 we must have
¬ϕ ∈ Γ or ¬ψ ∈ Γ , which is a contradiction.

To prove the second part, assume ϕ ∈ Γ or ψ ∈ Γ . By P1, we know that
either ϕ ∨ ψ ∈ Γ or ¬(ϕ ∨ ψ) ∈ Γ . If ¬(ϕ ∨ ψ) ∈ Γ , then by P2 we must have
¬ϕ ∈ Γ and ¬ψ ∈ Γ , which is a contradiction. ut

Lemma 36. For arbitrary maximal set of formulae Γ ⊆ L[ρ] it holds that

ϕ↔ ψ ∈ Γ implies Lrϕ ∈ Γ iff Lrψ ∈ Γ .

Proof. Let Γ ∈ L[ρ] be a maximal set of formulae and suppose ϕ↔ ψ ∈ Γ .

If Lrϕ ∈ Γ we have, by Q2, that L0ϕ ∈ Γ implying, by Q9, that L0ψ ∈ Γ . We
thus have Lrϕ ∈ Γ and L0ψ ∈ Γ implying, by P1 and P2, that Lrϕ ∧ L0ψ ∈ Γ
and therefore, by Q8, that Lrψ ∈ Γ .

If Lrψ ∈ Γ we have, by Q2, that L0ψ ∈ Γ implying, by Q9, that L0ϕ ∈ Γ . We
thus have Lrψ ∈ Γ and L0ϕ ∈ Γ implying, by P1 and P2, that Lrψ ∧ L0ϕ ∈ Γ
and therefore, by Q8, that Lrϕ ∈ Γ . ut

For arbitrary ϕ ∈ L[ρ], Ωϕ denotes the collection of all maximal sets Γ in the
language of ρ such that ϕ is contained in Γ , i.e.

Ωϕ = {Γ ⊆ L[ρ] | ϕ ∈ Γ and Γ is maximal} .

Lemma 37. For arbitrary formula ϕ ∈ L[ρ] and maximal set of formulae Γ ⊆
L[ρ] it holds that ∨

Γϕ∈Ωϕ

LΓϕM ∈ Γ iff ϕ ∈ Γ .

Proof. Let ϕ ∈ L[ρ] be a formula and Γ ⊆ L[ρ] a maximal set of formulae.

Suppose
∨
Γϕ∈ΩϕLΓϕM ∈ Γ implying, by P3, the existence of Γϕ ∈ Ωϕ such

that LΓϕM ∈ Γ implying further for all ψ ∈ Γϕ that ψ ∈ Γ . Because Γϕ ∈ Ωϕ we
must have ϕ ∈ Γϕ and therefore ϕ ∈ Γ .

Suppose ϕ ∈ Γ implying that Γ ∈ Ωϕ. By P1 we must have either LΓ M ∈ Γ
or ¬LΓ M ∈ Γ . ¬LΓ M ∈ Γ is equivalent to

∨
ψ∈Γ ¬ψ ∈ Γ implying, by P3, the

existence of a formula ψ ∈ Γ such that ¬ψ ∈ Γ which, by P1, is a contradiction
and therefore LΓ M ∈ Γ implying, by P1 and P2, that

∨
Γϕ∈ΩϕLΓϕM ∈ Γ . ut

Lemma 38. For arbitrary maximal sets of formulae Γ, Γ ′ ∈ L[ρ] it holds that

M(Γ, Γ ′) 6= ∅ implies maxL(Γ, Γ ′) ≤ minM(Γ, Γ ′)



Proof. Let Γ, Γ ′ ∈ L[ρ] be maximal sets of formulae and suppose M(Γ, Γ ′) 6= ∅.
There must exist a rational number q ∈ Q≥0 such that q ∈M(Γ, Γ ′) implying that
MqLΓ ′M ∈ Γ implying further, by Q7, that L0LΓ ′M ∈ Γ and therefore L(Γ, Γ ′) 6= ∅.

Suppose towards a contradiction that maxL(Γ, Γ ′) > minM(Γ, Γ ′) implying
the existence of a rational number q ∈ Q≥0 such that maxL(Γ, Γ ′) > q >
minM(Γ, Γ ′). q > minM(Γ, Γ ′) implies the existence of a rational number
r ∈ Q≥0 such that r < q and r ∈ M(Γ, Γ ′) which further implies MrLΓ ′M ∈ Γ .
maxL(Γ, Γ ′) > q implies the existence of a rational number r′ ∈ Q≥0 such that
r′ > q and r′ ∈ L(Γ, Γ ′) implying further that Lr′LΓ ′M ∈ Γ which, by Q6, implies
¬MrLΓ ′M ∈ Γ . We thus have MrLΓ ′M ∈ Γ and ¬MrLΓ ′M ∈ Γ which, according to
P1, is a contradiction and therefore maxL(Γ, Γ ′) ≤ minM(Γ, Γ ′). ut

Proof (Proof of Lemma 26). Let ρ ∈ L and ϕ ∈ L[ρ] be formulae. The proof is by
induction on ϕ. The boolean cases are trivial. For the case ϕ = Lrψ, we proceed
as follows.

( =⇒ ) Suppose Lrψ ∈ Γ implying by Q2 that L0ψ ∈ Γ . We first show
that JψK 6= ∅, which can be established by contradiction using P1, P2, Q1, and
Q9.

Suppose towards a contradiction that θ (Γ ) (JψK) = ∅ implying that ¬L0LΓ ′M ∈
Γ for all Γ ′ ∈ JψK. Because JψK is finite, it can be enumerated as JψK =
{Γ0, Γ1, . . . , Γn}. By P1 we must have either LrLΓ0M∨LrLΓ1M∨ · · · ∨LrLΓnM ∈ Γ
or ¬(LrLΓ0M ∨ LrLΓ1M ∨ · · · ∨ LrLΓnM) ∈ Γ . However, in the first case we get
L0LΓ ′M ∈ Γ , which is a contradiction, and in the second case we get ¬Lrψ ∈ Γ ,
which is also a contradiction.

Suppose towards a contradiction that θ− (Γ ) (JψK) < r implying the existence

of Γ ′ ∈ JψK such that Γ
x−→ρ Γ

′ where x < r, implying further by Lem. 38 that
maxL(Γ, Γ ′) < r. This implies the existence of some q ∈ Rρ, q < r such that
LqLΓ ′M ∈ Γ which, by Q2, implies that L0LΓ ′M ∈ Γ . By the inductive hypothesis,
we must have ψ ∈ Γ ′ and therefore we get LΓ ′M→ ψ ∈ Γ ′ by P2. Q8 then yields
that LrLΓ ′M ∈ Γ which, since maxL(Γ, Γ ′) < r, is a contradiction and therefore
θ− (Γ ) (JψK) ≥ r implying Mρ, Γ |= Lrψ.

( ⇐= ) Suppose Mρ, Γ |= Lrψ implying θ− (Γ ) (JψK) ≥ r. This means
that θ (Γ ) (JψK) 6= ∅ and hence JψK 6= ∅. We can partition JψK in the following
way. Let E = {Γ ′ ∈ JψK | L(Γ, Γ ′) = ∅} and N = {Γ ′ ∈ JψK | L(Γ, Γ ′) 6= ∅}, then
we have E ∪N = JψK, E ∩N = ∅, ¬L0LΓ ′M ∈ Γ for all Γ ′ ∈ E, and LrLΓ ′M ∈ Γ
for all Γ ′ ∈ N . Lemma 35 then gives∧

Γ ′∈E
¬L0LΓ ′M ∧

∧
Γ ′∈N

LrLΓ ′M ∈ Γ .

By Q3, this implies that∧
Γ ′∈E

¬L0LΓ ′M ∧ Lr
∨
Γ ′∈N

LΓ ′M ∈ Γ ,

so Q5 gives

Lr
∨

Γ ′∈JψK

LΓ ′M ∈ Γ .



By the induction hypothesis, Lem. 37, and Lem. 36, this implies that Lrψ ∈ Γ .
The Mr case is similar, using Q7 instead of Q2 to establish that L0ψ ∈ Γ . ut

Proof (Proof of Theorem 27). (1 =⇒ 2) Suppose there exists a maximal set
Γ ∈ 2L[ρ] such that ρ ∈ Γ . We can then construct the WTS Mρ given by Def.
25. Then by Lem. 26 we have Mρ, Γ |= ρ.

(2 =⇒ 1) Suppose there exists some model M = (S,→, `) such that
M, s |= ρ for some s ∈ S. Let Γm = {ϕ ∈ L[ρ] | M,m |= ϕ}. Clearly ρ ∈ Γm. It
remains to be shown that Γm is maximal.

P1: ϕ ∈ Γm iff M,m |= ϕ iff M,m 6|= ¬ϕ iff ¬ϕ /∈ Γm.
P2: If ϕ∧ψ ∈ Γm, thenM,m |= ϕ∧ψ, meaning thatM,m |= ϕ andM,m |= ψ.

Hence ϕ ∈ Γm and ψ ∈ Γm.
P3: If ϕ∨ψ ∈ Γm, thenM,m |= ϕ∨ψ, meaning thatM,m |= ϕ orM,m |= ψ.

Hence ϕ ∈ Γm or ψ ∈ Γm.

We have thus proven that Γm is propositionally maximal. The fact that Γm
is quantitatively maximal can be proven in exactly the same way as in the proof
of Thm. 15. Hence Γm is maximal. ut
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